
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C

Verdi: A Framework for Implementing and
Formally Verifying Distributed Systems

James R. Wilcox Doug Woos Pavel Panchekha
Zachary Tatlock Xi Wang Michael D. Ernst Thomas Anderson

University of Washington, USA
{jrw12, dwoos, pavpan, ztatlock, xi, mernst, tom}@cs.washington.edu

Abstract
Distributed systems are difficult to implement correctly because they
must handle both concurrency and failures: machines may crash at
arbitrary points and networks may reorder, drop, or duplicate pack-
ets. Further, their behavior is often too complex to permit exhaustive
testing. Bugs in these systems have led to the loss of critical data
and unacceptable service outages.

We present Verdi, a framework for implementing and formally
verifying distributed systems in Coq. Verdi formalizes various net-
work semantics with different faults, and the developer chooses the
most appropriate fault model when verifying their implementation.
Furthermore, Verdi eases the verification burden by enabling the
developer to first verify their system under an idealized fault model,
then transfer the resulting correctness guarantees to a more realistic
fault model without any additional proof burden.

To demonstrate Verdi’s utility, we present the first mechanically
checked proof of linearizability of the Raft state machine replication
algorithm, as well as verified implementations of a primary-backup
replication system and a key-value store. These verified systems
provide similar performance to unverified equivalents.

Categories and Subject Descriptors F.3.1 [Specifying and Veri-
fying and Reasoning about Programs]: Mechanical verification

Keywords Formal verification, distributed systems, proof assis-
tants, Coq, Verdi

1. Introduction
Distributed systems serve millions of users in important applications,
ranging from banking and communications to social networking.
These systems are difficult to implement correctly because they
must handle both concurrency and failures: machines may crash at
arbitrary points and networks may reorder, drop, or duplicate pack-
ets. Further, the behavior is often too complex to permit exhaustive
testing. Thus, despite decades of research, real-world implemen-
tations often go live with critical fault-handling bugs, leading to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright is held by the owner/author(s).
PLDI’15 , June 13–17, 2015, Portland, OR, USA
DOI: http://dx.doi.org/10.1145/10.1145/2737924.2737958
Reprinted from PLDI’15, June 13–17, 2015, Portland, OR, USA, pp. 357–368.

data loss and service outages [10, 42]. For example, in April 2011 a
malfunction of failure recovery in Amazon Elastic Compute Cloud
(EC2) caused a major outage and brought down several web sites,
including Foursquare, Reddit, Quora, and PBS [1, 14, 28].

Our overarching goal is to ease the burden for programmers
to implement correct, high-performance, fault-tolerant distributed
systems. This paper focuses on a key aspect of this agenda: we de-
scribe Verdi, a framework for implementing practical fault-tolerant
distributed systems and then formally verifying that the implemen-
tations meet their specifications. Previous work has shown that
formal verification can help produce extremely reliable systems,
including compilers [41] and operating systems [18, 39]. Verdi en-
ables the construction of reliable, fault-tolerant distributed systems
whose behavior has been formally verified. This paper focuses on
safety properties for distributed systems; we leave proofs of liveness
properties for future work.

Applying formal verification techniques to distributed system im-
plementations is challenging. First, while tools like TLA [19] and Al-
loy [15] provide techniques for reasoning about abstract distributed
algorithms, few practical distributed system implementations have
been formally verified. For performance reasons, real-world imple-
mentations often diverge in important ways from their high-level
descriptions [3]. Thus, our goal with Verdi is to verify working code.
Second, distributed systems run in a diverse range of environments.
For example, some networks may reorder packets, while other net-
works may also duplicate them. Verdi must support verifying ap-
plications against these different fault models. Third, it is difficult
to prove that application-level guarantees hold in the presence of
faults. Verdi aims to help the programmer separately prove correct-
ness of application-level behavior and correctness of fault-tolerance
mechanisms, and to allow these proofs to be easily composed.

Verdi addresses the above challenges with three key ideas. First,
Verdi provides a Coq toolchain for writing executable distributed
systems and verifying them; this avoids a formality gap between
the model and the implementation. Second, Verdi provides a flex-
ible mechanism to specify fault models as network semantics.
This allows programmers to verify their system in the fault model
corresponding to their environment. Third, Verdi provides a com-
positional technique for implementing and verifying distributed
systems by separating the concerns of application correctness and
fault tolerance. This simplifies the task of providing end-to-end
guarantees about distributed systems.

To achieve compositionality, we introduce verified system trans-
formers. A system transformer is a function whose input is an
implementation of a system and whose output is a new system
implementation that makes different assumptions about its environ-
ment. A verified system transformer includes a proof that the new
system satisfies properties analogous to those of the original system.
For example, a Verdi programmer can first build and verify a system

357

VST

Net Sem 2

Net Sem 1

7!

4

Net

Runtime 5Extractor

Net Sem 2

Proof
CheckerSpec’

Proof’

1: Name’
2: I/O’ + Msg’
3: State’

4: Handler’

Impl’

Spec

Proof

1: Name
2: I/O + Msg
3: State

4: Handler

Impl

1

2

3

Figure 1. Verdi workflow. Programmers provide the dark gray boxes in the left column: the specification, implementation, and proof of
a distributed system. Rounded rectangles correspond to proof-related components. To make the proof burden manageable, the initial proof
typically assumes an unrealistically simple network model in which machines never crash and packets are never dropped or duplicated. A
verified system transformer (VST) transforms the application into one that handles faults, as shown in the column of light gray boxes in
the middle column. Note that the programmer does not write any code for this step. Verdi provides the white boxes, including verified systems
transformers (VSTs), network semantics encoding various fault models, and extraction of an implementation to an executable. Programmers
deploy the executable over a network for execution.

assuming a reliable network, and then apply a transformer to obtain
another version of their system that correctly and provably tolerates
faults in an unreliable network (e.g., machine crashes).

Contributions. This paper makes the following contributions:
(1) Verdi, a publicly available [37] toolchain for building provably
correct distributed systems, (2) a set of formal network semantics
with different fault models, (3) a compositional verification tech-
nique using verified system transformers, (4) case studies of imple-
menting, and proving correct, practical distributed systems including
a key-value store, a primary-backup replication transformer, and the
first formally verified proof of linearizability for the Raft consensus
protocol [30], and (5) an evaluation showing that these implemen-
tations can provide reasonable performance. Our key conceptual
contribution is the use of verified systems transformers to enable
modular implementation and end-to-end verification of systems.

The rest of the paper is organized as follows. Section 2 overviews
the Verdi system. Section 3 details the small-step operational seman-
tics that specify distributed system behavior in different fault models.
Section 4 describes how systems in Verdi can be constructed from
modular components. Sections 5–7 describe case studies of using
Verdi to implement and verify distributed systems. Section 8 eval-
uates the performance of systems implemented in Verdi. Section 9
discusses related work, and Section 10 concludes.

2. Overview
Figure 1 illustrates the Verdi workflow. The programmer À spec-
ifies a distributed system and Á implements it by providing four
definitions: the names of nodes in the system, the external input
and output and internal network messages that these nodes respond
to, the state each node maintains, and the message handling code
that each node runs. Â The programmer proves the system correct
assuming a specific baseline network semantics. In the examples
in this paper, the programmer chooses an idealized reliable model
for this proof: all packets are delivered exactly once, and there are
no node failures. Ã The programmer then selects a target network
semantics that reflects their environment’s fault model, and applies
a verified system transformer (VST) to transform their implementa-
tion into one that is correct in that fault model. This transformation
also produces updated versions of the specification and proof. Ä The
verified system is extracted to OCaml, compiled to an executable,
and deployed across the network.

The rest of this section describes each of these five steps, using a
simple lock service as a running example. The lock service manages
a single shared lock. Conceptually, clients communicate with the
lock service using the following API: a client requests and releases
a lock via the Lock and Unlock input messages, and the lock service
grants a lock by responding with a Grant output message.

Client

Other
local

processes
Agent

Input

Output

Client

Other
local

processes
Agent

Input

Output

Server

Message

Message

Figure 2. Architecture of a lock service application. Boxes
represent separate physical nodes, while dotted lines separate
processes running on the same node. Each client node runs an Agent
process that exchanges input and output with other local processes.
The Agent also exchanges network messages with the Server.

To provide this API, the lock service consists of a central lock
Server node, and a lock Agent that runs on every client node, as
illustrated in Figure 2. That is, each client node runs a lock Agent
along with other client processes that access the API through the
Agent. Each lock Agent communicates over the network with the
central lock server. The Agent requests and releases the lock with
the LockMsg and UnlockMsg network messages, and the server sends
a GrantMsg network message to notify an Agent when it has received
the lock.

2.1 Specification

A Verdi programmer specifies the correct behavior of their system
in terms of traces, the sequences of external input and output gen-
erated by nodes in the system. For the lock service application,
correctness requires mutual exclusion: no two distinct nodes should
ever simultaneously hold the lock. This mutual exclusion property
can be expressed as a predicate over traces:

mutex(τ) :=

τ = τ1 ++ 〈n1, Grant〉 ++ τ2 ++ 〈n2, Grant〉 ++ τ3
→ 〈n1, Unlock〉 ∈ τ2

To hold on trace τ , the mutex predicate requires that whenever Grant
is output on node n1 and then later Grant is output on node n2, there
must first be an intervening Unlock input from n1 releasing the lock.

A system implementation satisfies specification Φ in a particular
network semantics if for all traces τ the system can produce under
that semantics, Φ holds on τ . For the example lock service applica-

358

(* 1 - node identifiers *)
Name := Server | Agent(int)

(* 2 - API, also known as external IO *)
Inp := Lock | Unlock
Out := Grant
(* 2 - network messages *)
Msg := LockMsg | UnlockMsg | GrantMsg

(* 3 - state *)
State (n: Name) :=
match n with
| Server => list Name (* head = agent holding lock *)

(* tail = agents waiting for lock *)
| Agent n => bool (* true iff this agent holds lock *)

InitState (n: Name) : State n :=
match n with
| Server => []
| Agent n => false

(* 4 - handler for external input *)
HandleInp (n: Name) (s: State n) (inp: Inp) :=
match n with
| Server => nop (* server performs no external IO *)
| Agent n =>
match inp with
| Lock => (* client requests lock *)
send (Server, LockMsg) (* forward to Server *)

| Unlock => (* client requests unlock *)
if s == true then ((* if lock held *)
s := false;; (* update state *)
send (Server, UnlockMsg)) (* tell Server lock freed *)

(* 4 - handler for network messages *)
HandleMsg (n: Name) (s: State n) (src: Name) (msg: Msg) :=
match n with
| Server =>
match msg with
| LockMsg =>
(* if lock not held, immediately grant *)
if s == [] then send (src, GrantMsg);;
(* add requestor to end of queue *)
s := s ++ [src]

| UnlockMsg =>
(* head of queue no longer holds lock *)
s := tail s;;
(* grant lock to next waiting agent, if any *)
if s != [] then send (head s, GrantMsg)

| _ => nop (* never happens *)
| Agent n =>
match msg with
| GrantMsg => (* lock acquired *)
s := true;; (* update state *)
output Grant (* notify listeners *)

| _ => nop (* never happens *)

Figure 3. A simple lock service application implemented in Verdi,
under the assumption of a reliable network. Verdi extracts these
definitions into OCaml and links the resulting code with a runtime
to send and receive messages over the network.

tion, an implementation satisfies mutex in a given semantics if mutex
holds on all the traces produced under that semantics.

2.2 Implementation
Figure 3 shows the definitions a programmer provides to implement
the lock service application in Verdi. (1) Name lists the names of
nodes in the system. In the lock service application, there is a single
Server node and an arbitrary number of Agents. (2) Inp and Out
define the API of the lock service — the external input and output
exchanged between an Agent and other local processes on its node.
Msg defines network messages exchanged between Agents and the
central Server. (3) State defines the state maintained at each node.
Node state is defined as a dependent type where a node’s name de-
termines the data maintained locally at that node. In the lock service,

the Server maintains a queue of Agent nodes, initially empty, where
the head of the queue is the Agent currently holding the lock and the
rest of the queue represents the Agents which are waiting to acquire
the lock. Each Agent maintains a boolean, initially false, which
is true exactly when that Agent holds the lock. (4) The handler
functions HandleInp and HandleMsg define how nodes respond to
external input and to network messages.

This implementation assumes a reliable network where machines
never crash and packets may be reordered but are not dropped or du-
plicated. These assumptions reduce the programmer’s effort in both
implementing the application and proving it correct. Section 2.4
shows how Verdi can automatically transform the lock service
application into a version that tolerates faults.

When the system runs, each node listens for events and responds
by running the appropriate handler: HandleInp for external input
and HandleMsg for network messages. When an Agent receives an
external input that requests to acquire or release the lock, it forwards
the request to the Server; in the Unlock case, it first checks to ensure
that the lock is actually held, and it resets its local state to false.
Because the network is assumed to be reliable, no acknowledgment
of the release is needed from the Server. When the Server receives
a LockMsg network message, if the lock is not held, the server imme-
diately grants the lock, and always adds the requesting Agent to the
end of the queue of nodes. When the Server receives an UnlockMsg
message, it removes a node from the head of its queue of Agents and
grants the lock to the next Agent in the queue, if any. When an Agent
receives a GrantMsg message, it produces external output (Grant) to
inform other processes running on its node that the lock is held.

The application will be deployed on some network, and network
semantics capture assumptions about the network’s behavior. For
this example, we assume a semantics encoding a reliable network. In
a reliable network, each step of execution either (1) picks an arbitrary
node and delivers an arbitrary external input, runs that node’s input
handler, and updates the state, or (2) picks a message in the network,
runs the recipient’s message handler, and updates the state.

Figure 4 shows an execution of the lock service application with
two agents. Agents A1 and A2 both try to acquire the lock. The
service first grants the lock to A1. Once A1 releases the lock, the
service grants it to A2. Note that, because our network semantics
does not assume messages are delivered in the same order in which
they were sent, there is a potential race condition: an agent can
attempt to re-acquire the lock before the server has processed its
previous release. In that case, the server simply (and correctly)
adds the sender to the queue again. Using Verdi, the lock service is
guaranteed to behave correctly even in such corner cases.

2.3 Verifying the Lock Service Application
We briefly outline the proof of the mutex property for the lock service
application in the reliable network environment (i.e., no machine
crashes nor packet loss/duplication). The proof that mutex holds on
all traces of the lock service application consists of three high-level
steps: (1) prove an invariant about the reachable node and network
states of the lock service application, (2) relate these reachable states
to the producible traces, and (3) show that the previous two steps
imply mutex holds on all producible traces.

The first step proves that all reachable system states satisfy the
mutexstate property:

mutexstate(Σ, P) :=

∀ n m, n 6= m→ ¬hasLock(Σ, n) ∨ ¬hasLock(Σ, m)

hasLock(Σ, n) :=

Σ(Agent(n)) = true

The function Σ maps node names to their state, and P is the set of
in-flight packets. The property mutexstate ensures that at most one
Agent node holds the lock at a time.

359

A1 S A2

false [] false

Lock

[A1]

LockMsg

true

GrantMsg
Grant

Lock

[A1,A2]

LockMsg

false

Unlock

[A2]UnlockMsg

trueGrantMsg

Grant

[〈A1, Lock〉, 〈A2, Lock〉, 〈A1, Grant 〉, 〈A1, Unlock〉, 〈A2, Grant 〉]

Figure 4. The behavior of the lock service application, with one
server S and two agents A1 and A2. Each agent starts with the
state false, and the server starts with an empty queue. Time flows
downward. In response to external input (drawn with lightning-bolt
arrows) and network messages, the nodes exchange messages and
update local state. External output is shown as speech bubbles.
The trace of this execution is shown at the bottom; note that only
externally-visible events (external input and output) appear in the
trace.

A programmer can verify the mutexstate property by proving an
inductive state invariant. A property φ is an inductive invariant if
both (1) it holds in the initial state, (Σ0, ∅), where Σ0 maps each
node to its initial state and ∅ represents the initial, empty network,
and also (2) whenever it holds in some state, (Σ, P), and (Σ, P)
can step to (Σ′, P ′), then it holds in (Σ′, P ′).

One inductive state invariant for mutexstate is:

(∀ n, hasLock(Σ, n) → atHead(Σ, n))

∧ (∀ p ∈ P, p.body = GrantMsg→ grantee(Σ, p.dest))

∧ (∀ p ∈ P, p.body = UnlockMsg→ grantee(Σ, p.source))

∧ at_most_one {GrantMsg, UnlockMsg} P

where

atHead(Σ, n) := ∃ t, Σ(Server) = n :: t

grantee(Σ, n) := atHead(Σ, n) ∧ ¬hasLock(Σ, n).

The first conjunct above ensures that the Server and Agents agree
on who holds the lock. The second and third conjuncts state that
GrantMsg is never sent to an agent that already holds the lock, and
that UnlockMsg is never sent from an agent that still holds the lock.
Finally, the last conjunct states that there is at most one in-flight
message in the set {GrantMsg, UnlockMsg}; this is necessary to ensure
that neither of the previous two conjuncts is violated when a message
is delivered. We proved in Coq that this invariant is inductive and
that it implies mutexstate; the proof is approximately 500 lines long.

The second step of the proof relates reachable states to the traces
a system can produce:

trace_state_agreement(τ, Σ) :=

∀ n, lastGrant(τ, n) ↔ hasLock(Σ, n)

lastGrant(τ, n) :=

τ = τ1 ++ 〈n, Grant〉 :: τ2 ∧ ∀m, 〈m, Unlock〉 6∈ τ2

This property requires that whenever a Grant output appears in the
trace without a corresponding Unlock input, that agent’s flag is true
(and vice versa). The proof of this property is by induction on the
possible behavior of the network.

The third step of the proof shows that together, mutexstate
and trace_state_agreement imply that mutex holds on all traces
of the lock service application under the reliable semantics.
This result follows from the definitions of mutex, mutexstate, and
trace_state_agreement.

2.4 Verified System Transformers

We have proved the mutex property for a reliable environment where
the network does not drop or duplicate packets and the server does
not crash. Assuming such a reliable environment simplifies the proof
by allowing the programmer to consider fewer cases. To transfer the
property into an unreliable environment with network and machine
failures, a programmer uses Verdi’s verified system transformers.
As illustrated by Figure 1 part Ã, after verifying a distributed
system in one network semantics, a programmer can apply a verified
system transformer to produce another version of their system which
provides analogous guarantees in another network semantics.

In general, there are two types of transformers in Verdi: transmis-
sion transformers that handle network faults like packet duplication
and drops and replication transformers that handle node crashes.
Below we describe an example transmission transformer for the lock
service application and briefly overview replication transformers,
deferring details to Section 7.

Tolerating network faults. Figure 3’s implementation of the
lock service application will not function correctly in a network
where messages can be duplicated. If an UnlockMsg message is du-
plicated but the agent reacquires the lock before the second copy
is delivered, the server will misinterpret the duplicated UnlockMsg
message as releasing the second lock acquisition.

Realistically, most developers would not run into this issue, as
correct TCP implementations reject duplicate transmissions. How-
ever, some distributed systems need to handle deduplication and
retransmission at a higher level, or choose not to trust the guarantees
provided by unverified TCP implementations.

As another option, a programmer could rewrite the lock service—
for instance, by including a unique identifier with every GrantMsg
and UnlockMsg message to ensure that they are properly paired.
The developer would then need to re-prove system correctness for
this slightly different system in the semantics that models packet-
duplicating networks. This would require finding a new inductive
invariant and writing another proof.

Verdi allows developers to skip these steps. Verdi provides a
system transformer that adds sequence numbers to every outgoing
packet and ignores packets with sequence numbers that have already
been seen. Applying this transformer to the lock service yields
both a new system and a proof that the new system preserves the
mutex property even when packets are duplicated by the underlying
network. Section 4 further details this transformer.

More generally, Verdi decouples the verification of application-
level guarantees from the implementation and verification of fault-
tolerance mechanisms. Verdi provides a collection of verified system
transformers which allow the developer to transfer guarantees about
a system in one network semantics to analogous guarantees about

360

a transformed version of the system in another network semantics.
This allows a programmer to build and verify their system against an
idealized semantics and use a verified system transformer to obtain
a version of the system that provably tolerates more realistic faults
while guaranteeing end-to-end system correctness properties.

Tolerating machine crashes. Verdi also provides verified sys-
tem transformers to tolerate machine crashes via replication. Such
replication transformers generally create multiple copies of a node
in order tolerate machine crashes. This changes the number of
nodes when transforming a system, which we discuss further in Sec-
tion 7. (By contrast, transmission transformers like the one described
above generally preserve the number of nodes and the relationships
between them when transforming a distributed system.)

2.5 Running the Lock Service Application

Now we have a formally verified lock service, written in Coq, that
tolerates message duplication faults. To obtain an executable for
deployment, a Verdi programmer invokes Coq’s built-in extraction
mechanism to generate OCaml code from the Coq implementa-
tion, compile it with the OCaml compiler, and link it with a Verdi
shim. The shim is written in OCaml; it implements network prim-
itives (e.g., packet send/receive) and an event loop that invokes the
appropriate event handler for incoming network packets, IO, or
other events.

2.6 Summary

We have demonstrated how to use Verdi to establish a strong guar-
antee of the mutex property for the lock service application running
in a realistic environment. Specifically, a programmer first specifies,
implements, and verifies an application assuming a reliable environ-
ment. The programmer then applies system transformers to obtain a
version of their application that handles faults in a provably correct
way.

Verdi’s trusted computing base includes the following compo-
nents: the specifications of verified applications, the assumption
that Verdi’s network semantics match the physical network, the
Verdi shim, Coq’s proof checker and OCaml code extractor, and the
OCaml compiler and runtime.

Verdi currently supports verifying safety properties, but not
liveness properties, and none of Verdi’s network semantics currently
capture Byzantine fault models. We believe that Verdi could be ex-
tended to support these features: liveness properties could be verified
by supporting infinite traces and adding fairness hypotheses as ax-
ioms as in TLA [19], while Byzantine fault models can be supported
by adding more non-determinism in the network semantics.

3. Network Semantics
The correctness of a distributed system relies on assumptions about
its environment. For example, one distributed system may assume
a reliable network, while others may be designed to tolerate packet
reordering, loss, or duplication. To enable programmers to reason
about the correctness of distributed systems in the appropriate envi-
ronment model, Verdi provides a spectrum of network semantics that
encode possible system behaviors using small-step style derivation
rules.

This section presents the spectrum of network semantics that
Verdi provides, ranging from single-node systems that do not rely
on the network, through models of increasingly unreliable packet
delivery (reordering, drops, and duplication), and culminating with
a model that permits arbitrary node crashes under various recov-
ery assumptions. Each of these semantics is useful for reasoning
about different types of systems. For example, the properties of
single-node systems can be extended to handle node failures using
protocols like Raft, while packet duplication semantics is useful for

Hinp(σ, i) = (σ′, o)

(σ, T) s (σ′, T ++ 〈i, o〉)
INPUT

Figure 5. Single-node semantics. The derivation rule above en-
codes possible behaviors of a single-node system that does not rely
on the network. When the node is in state σ with input/output trace
T , it may receive an arbitrary input i, and respond by running its
input handlerHinp(σ, i), which generates both the next state σ′ and
a list of outputs o. The INPUT rule relates the two states of the world
(σ, T) s (σ′, T ++ 〈i, o〉) to reflect that the node has updated
its state to σ′ and sent outputs o in response to input i. Verifying
properties of such single-node systems (i.e. state machines) is useful
when they are replicated over a network to provide fault tolerance.

verifying packet delivery even in the face of reconnection, something
that raw TCP does not support.

In Verdi, network semantics are defined as step relations on a
“state of the world”. The state of the world differs among network
semantics, but always includes a trace of the system’s external input
and output. For example, many semantics include a bag of in-flight
packets that have been sent by nodes in the system but have not
yet been delivered to their destinations. Each network semantics is
parameterized by system-specific data types and handler functions.
Below we detail several of the network semantics Verdi currently
provides.

Single-node semantics We begin with a simple semantics for
single-node systems that do not use the network, i.e. state machines.
This semantics is useful for proving properties of single-node
systems; these can be extended, using a verified system transformer
based on Raft, to provide fault tolerance. The single-node semantics,
shown in Figure 5, models systems of a single node that respond
to input by modifying their state and producing output. The node’s
behavior is described by a handler H , which takes the current local
state and an input and returns the new state and a list of outputs.
The state of the world in this semantics is the node’s state σ paired
with a trace T that records the inputs sent to the system along with
the outputs the system generates. The only step, INPUT, delivers an
arbitrary input i to the handler H and records the results in the next
state. The squiggly arrow between two states indicates that a system
in the state of the world on the left of the arrow may transition
to the state of the world on the right of the arrow when all of the
preconditions above the horizontal bar are satisfied. The node’s state
is updated, and the trace is extended with the input i and the output o.

Reordering semantics The reordering semantics, shown in Fig-
ure 6, models a system running on multiple nodes where packets are
always delivered but may be arbitrarily reordered. This was the “re-
liable” semantics initially used for the lock service implementation
in Section 2. Each node communicates with other processes running
on the same host via input and output, just as in the single-node
semantics. Nodes can also exchange packets, which are tuples of
the form (source, destination, message), over a network that may
reorder packets arbitrarily but does not drop, duplicate, or fabricate
them. The behavior of nodes is described by two handler functions.
The input handler, Hinp, is run whenever a node receives input from
another process on the same host. Hinp takes as arguments the node
on which it is running, the current local state, and the input that
was delivered. It returns the new local state and a list of outputs and
packets to be processed by the semantics. Similarly, the network
handler, Hnet, is run whenever a packet is delivered from the net-
work. Hnet takes as arguments the receiver of the packet, the sender
of the packet, the local state, and the message that was delivered.

361

Hinp(n, Σ[n], i) = (σ′, o, P ′) Σ′ = Σ[n 7→ σ′]

(P, Σ, T) r (P] P ′, Σ′, T ++ 〈i, o〉)
INPUT

Hnet(dst, Σ[dst], src, m)=(σ′, o, P ′)

Σ′ =Σ[dst 7→ σ′]

({(src, dst, m)}] P, Σ, T) r (P] P ′, Σ′, T ++ 〈o〉)
DELIVER

Figure 6. Reordering semantics. The derivation rules above encode
the behavior of systems running on networks that may arbitrarily
reorder packet delivery. The network is modeled as a bag (i.e. a
multiset) P of packets, which contain source and destination node
names as well as a message. The state at each node in the network is
a map Σ from node names to system-defined data. The INPUT rule
passes arbitrary input i to the input handler Hinp for a given node n
in state σ, which generates the next state σ′, a list of outputs o, and a
multiset of new packets P ′. The outputs are added to the externally-
visible trace, while the packets are added to the network (using
the multiset-union operator]). The DELIVER rule works similarly,
except that instead of running a handler in response to arbitrary input,
the network handle Hnet is run on a packet taken from the network.

p ∈ P

(P, Σ, T) dup (P] {p}, Σ, T)
DUPLICATE

Figure 7. Duplicating semantics. The duplicating semantics
includes all the derivation rules from the reordering semantics,
which we elide for space. In addition, it includes the DUPLICATE
rule, which duplicates an arbitrary packet in the network. This
represents a simple class of network failure in which a network
misbehaves by delivering the same packet multiple times.

A state of the world in the reordering semantics consists of a bag
of in-flight packets P , a map from nodes to their local state Σ, and
a trace T . The two rules in the reordering semantics, INPUT and
DELIVER, respectively, model input from other processes on the
node’s host (i.e. the “outside world”) and delivery of a packet from
the network, where the corresponding handler function executes as
described above. Delivered packets are removed from the bag of
in-flight packets. Input and output are recorded in the trace; new
packets are added to the bag of in-flight packets.

Duplicating semantics The duplicating semantics, shown in Fig-
ure 7, extends the reordering semantics to model packet duplication
in the network. In addition to the INPUT and DELIVER rules from
the reordering semantics, the duplicating semantics includes the rule
DUPLICATE, which adds an additional copy of an in-flight packet
to the network.

Dropping semantics Figure 8 specifies a network that drops ar-
bitrary in-flight packets. The DROP rule allows any packet in the
in-flight bag P to be dropped. However, simply adding this rule to
the semantics would make it very difficult to write working systems,
since handler functions only execute when packets are delivered
and packets may be arbitrarily dropped. Real networked systems
handle the possibility that packets can be dropped by setting time-
outs, which execute if a certain amount of time has elapsed without
receiving some other input or packet. We model this behavior in the
TIMEOUT rule: a timeout can be delivered to any node at any time,
and will execute the node’s Htmt handler.

({p}] P, Σ, T) drop (P, Σ, T)
DROP

Htmt(n, Σ[n]) = (σ′, o, P ′) Σ′ = Σ[n 7→ σ′]

(P, Σ, T) drop (P] P ′, Σ′, T ++ 〈tmt, o〉)
TIMEOUT

Figure 8. Dropping semantics. The dropping semantics includes the
two rules above in addition to all the derivation rules from the dupli-
cating semantics. The DROP rule allows a network to arbitrarily drop
packets. Systems which tolerate dropped packets need to retransmit
some messages, so the dropping semantics also includes a TIMEOUT
rule, which fires a node’s timeout handler Htmt. The Verdi shim im-
plements this by setting system-defined timeouts after every event;
if another event has not occurred on a given node before the timeout
fires, the system’sHtmt handler is executed. Note that the semantics
do not explicitly model time and allow timeouts to occur at any step.

n 6∈ F

(P, Σ, F, T) fail (P, Σ, {n} ∪ F, T)
CRASH

n ∈ F Hrbt(n, Σ[n]) = σ′ Σ′ = Σ[n 7→ σ′]

(P, Σ, F, T) fail (P, Σ′, F − {n}, T)
REBOOT

Figure 9. Failure semantics. The node failure semantics represents
a network in which nodes can both stop and start, and adds a set of
failed nodes F to the state of the world. The node failure semantics
includes all the derivation rules from the dropping semantics in
addition to the rules above. The rules from the drop semantics are
modified to only run when node n is not in the set of failed nodes
F . The CRASH rule simply adds a node to the set of failed nodes
F . Crashed nodes may re-enter the network via the REBOOT rule,
at which point their state is restored according to the Hrbt function.

Node failure There are many possible models for node failure.
Some systems assume that nodes will always return after a failure,
in which case node failure is equivalent to a very long delay. Others
assume that nodes will never return to the system once they have
failed. Verdi’s semantics for node failure, illustrated in Figure 9
assumes that nodes can return to the system and that all, some, or
none of their state will be preserved (i.e. read back in from non-
volatile storage). The state of the world in the node failure semantics
includes a set F containing the nodes which have failed. The rules
from the drop semantics are included in the failure semantics, but
each with an added precondition to ensure that only live nodes (i.e.
nodes that are not in F) can receive external input, network packets,
or timeouts. A node can fail (be added to F) at any time, and failed
nodes can return at any time. When a failed node returns, the Hrbt

(reboot) function is run on its pre-failure state to determine what
state survives the failure.

Low-level details Verdi’s network semantics currently elide low-
level network details. For example, input, output, and packets are
modeled as abstract datatypes rather than bits exchanged over wires,
and system details such as connection state are not modeled. This
level of abstraction simplifies Verdi’s semantics and eases both
implementation and proof. Lower-level semantics could be devel-
oped and connected to the semantics presented here via system
transformers, as described in the next section. This would further

362

reduce Verdi’s trusted computing base and increase our confidence
in the end-to-end guarantees Verdi provides.

4. Verified System Transformers
Verdi’s spectrum of network semantics enable the programmer to
reason about their system running in the fault model corresponding
to their environment. However, directly verifying a system in a
realistic fault model requires establishing both application-level
guarantees and the correctness of fault-tolerance mechanisms simul-
taneously. Verdi provides verified system transformers to separate
these concerns and enable a modular approach to building and veri-
fying distributed systems. The programmer can assume an idealized
network while verifying application-level guarantees and then apply
a transformer to obtain a system that tolerates more faults while
providing analogous guarantees.

For common fault models, the distributed systems community
has developed standard techniques to handle failures. For example,
as discussed in Section 2, by adding a unique sequence number to
every message and ignoring previously received messages, systems
can handle packet duplication. Verdi supports such standard fault-
tolerance mechanisms through verified system transformers, which
transform systems from one semantics to another while guarantee-
ing that analogous system properties are preserved. For example, in
the transformer that handles deduplication, any property that holds
on the underlying system is true of the transformed system when
sequence numbers are stripped away.

System transformers are implemented as wrappers around the
system’s state, messages, and handlers. Messages and state are
generally transformed to include additional fields. Handlers in the
transformed system call into underlying handlers and implement
additional functionality. The underlying handlers are called with
underlying state and underlying messages, capturing the intuition
that the underlying handlers are unable to distinguish whether
they are running in their original network semantics or the new
semantics targeted by the system transformer.

System transformers in Verdi are generally either transmission
transformers, which tolerate network faults by adding functional-
ity to every node in a system, or replication transformers, which
tolerate node failures by making several copies of the underlying
nodes. The sequence numbering transformer discussed below is an
example of a transmission transformer. Sections 6 and 7 discuss
replication transformers.

4.1 Sequence Numbering Transformer

Sequence numbering is a technique for ensuring that messages
are delivered at most once. Senders tag each outgoing message with
a sequence number that is unique among all messages from that
sender. Message recipients keep track of all 〈number, sender〉 pairs
they have seen. If a message arrives with a 〈number, sender〉 pair
that the destination has seen before, the message is discarded.

Figure 10 shows the Verdi implementation of the sequence num-
bering transformer, SeqNum. It takes a distributed system S as input
and produces a new distributed system that implements sequence
numbering by wrapping the message, state, and handler definitions
in S. SeqNum leaves the Name, Inp, and Out types unchanged. It adds
an integer field to each message which is used as a sequence number
to uniquely identify messages. SeqNum also adds a list of (Name, int)
pairs to the state to track the sequence numbers received from other
nodes in the system, as well as an additional counter to track the
local node’s current maximum sequence number. The initial state
in the wrapped system is constructed by building the initial state for
the underlying system and then setting all sequence numbers to zero.
To handle messages, the wrapped handler checks the input message
to determine if it has previously been processed: if so, the message
is simply dropped; otherwise, the message is passed to the message

(* S describes a system in the reordering semantics *)
SeqNum (S) :=
Name := S.Name

Inp := S.Inp
Out := S.Out
Msg := { seqnum: int; underlying_msg: S.Msg }

State (n: Name) := { seen: list (Name * int);
next_seqnum: int;
underlying_state: S.State n }

InitState (n: Name) := { seen := [];
next_seqnum := 0;
underlying_state := S.InitState n }

HandleInp (n: Name) (s: State n) (inp: Inp) :=
wrap_result (S.HandleInp (underlying_state s) inp)

HandleMsg (n: Name) (s: State n) (src: Name) (msg: Msg) :=
if not (contains s.seen (src, msg.seqnum)) then
s.seen := (src, msg.seqnum) :: s.seen;;
(* wrap_result adds sequence numbers to messages while
incrementing next_seqnum *)

wrap_result (S.HandleMsg n (underlying_state s)
src (underlying_msg msg))

Figure 10. Pseudocode for the sequence numbering transformer.

handler of S. Messages sent by the underlying handler are paired
with fresh sequence numbers and the sequence number counter is
incremented appropriately using the helper function wrap_result.
The input handler passes input through to the input handler from S
and wraps the results.

4.2 Correctness of Sequence Numbering

Given a proof that property Φ holds on every trace of an underlying
system, the correctness of a system transformer should enable a
programmer to easily establish an analogous property Φ′ of traces
in the transformed system.

Each verified system transformer T provides a function transfer
which translates properties of traces in the underlying semantics 1

to the target semantics 2:

∀ Φ S, holds(Φ, S, 1) →
holds(transfer(Φ), T (S), 2)

where holds(Φ, S,) asserts that a property Φ is true of all traces
of a system S under the semantics defined by . Crucially, the
transfer function defines how properties of the underlying system
are translated to analogous properties of the transformed system.

For the sequence numbering transformer, 1 is r (the step
relation for the reordering semantics) and 2 is dup (the step
relation for the duplicating semantics). The transfer function is the
identity function: properties of externally visible traces are precisely
preserved by the transformation. Intuitively, the external output
depends only on the wrapped state of the system, and the wrapped
state is preserved by the transformer.

We prove that the wrapped state is preserved by backward sim-
ulation: for any step the transformed system T (S) can take, the
underlying system S can take an equivalent step. We specify this
using helper functions unwrap and dedupnet. Given the global state
of the transformed system, unwrap returns the underlying state at
each node. Given the global state of the transformed system and the
bag of in-flight messages, dedupnet returns a bag of packets which
includes only those messages which will actually be delivered to
the underlying handlers—non-duplicate packets which have not
yet been delivered. The simulation is specified as follows, where
 ?

dup and ?
r are the reflexive transitive closures of the duplicating

363

semantics and the reordering semantics, respectively:

(Σ0, ∅, ∅) ?
dup (Σ, P, T) →

(unwrap(Σ0), ∅, ∅) ?
r (unwrap(Σ), dedupnet(Σ, P), T)

The proof is by induction on the step relation. For DUPLICATE steps,
 ?

r holds reflexively, since dedupnet returns the same network when
a packet is duplicated and the state and trace are unchanged. For
DELIVER steps, the proof shows that either the delivered packet is
ignored by the destination node, in which case ?

r holds reflexively,
or that the underlying handler is run normally, in which case the
underlying system can take the analogous DELIVER step. For both
the DELIVER and INPUT steps, the proof shows that wrapping the
sent packets results in a deduplicated network that is reachable in
the underlying system. These proofs require several facts about the
internal state of the sequence numbering transformer, such as the
fact that all nodes correctly maintain their next_seqnum field. These
internal state properties are proved by induction on the execution.

4.3 Ghost Variables and System Transformers
Many program verification frameworks support ghost variables:
state which is never read during program execution, but which is
necessary for verification (e.g. to provide sufficiently strong induc-
tion hypotheses). In Verdi, ghost variables are implemented via a
system transformer. Like the sequence numbering transformer, the
ghost variable transformer adds information to the system’s state
while ensuring that the wrapped state is preserved. The system’s
original handlers are called in order to update the wrapped state and
send messages; the new handlers only update the ghost state. The
indistinguishability result shows that the ghost transformer does not
affect the externally-visible trace or the wrapped state. In this way,
ghost state can be added to Verdi systems for free, without requiring
any additional proof effort to show that properties verified in the
ghost system hold for the underlying system as well.

5. Case Study: Key-Value Store
As a case study, we implemented a simple key-value store as a
single-node system in Verdi. The key-value store accepts get, put,
and delete operations as input. When the system receives input
get(k), it outputs the value associated with key k; when the system
receives input put(k, v), it updates its state to associate key k with
value v; and when the system receives input delete(k), it removes
any associations for the key k from its state. Internally, the mapping
from keys to values is represented using an association list.

The key-value store’s correctness is specified in terms of traces.
First, operations on a single key are specified using an interpreter
over trace input/output events, which runs each operation and returns
the final result. For instance,

interpret [put “foo”, put “bar”, get] = “bar”

Trace correctness is then defined using the interpreter: for ev-
ery 〈input, output〉 pair in the trace, output is equal to the value
returned by running the interpreter on all operations on that key up
to that point. This trace-based specification allows the programmer
to change the backing data structure and implementation of each
operation without changing the system’s specification. Moreover,
additional operations can be added to the specification via small
modifications to the interpretation function.

We prove the key-value store’s correctness by relating its trace to
its current state: for all keys, the value in the association list for that
key is equal to interpreting all the operations on that key in the trace.
The proof is by induction on the execution, and is approximately
280 lines long.

In the next section, we will see how a state-machine replication
system can be implemented and verified using Verdi. Combining
the key-value store with the replication transformer provides an end-

PB (S) :=
Name := Primary | Backup

Msg := Replicate S.Inp | Ack
Inp := S.Inp
Out := { request: S.Inp; response: S.Out }
State (n: Name) = { queue: list S.Inp;

underlying_state: S.State }

InitState (n: Name) = { queue := [];
underlying_state := S.InitState n }

HandleInp (n: Name) (s: State n) (inp: Inp) :=
if n == Primary then
append_to_queue inp;;
if length s.queue == 1 then
(* if not already replicating a request *)
send (Backup, Replicate (head s.queue))

HandleMsg (n: Name) (s: State n) (src: Name) (msg: Msg) :=
match n, msg with
| Primary, Ack =>
out := apply_entry (head s.queue);;
output { request := head s.queue; response := out };;
pop s.queue;;
if s.queue != [] then
send (Backup, Replicate (head s.queue))

| Backup, Replicate i =>
apply_entry i;;
send (Primary, Ack)

Figure 11. Pseudocode for the primary-backup transformer. The
primary node accepts commands from external input and replicates
them to the backup node. During execution, the primary node keeps
a queue of operations it has received but not yet replicated to the
backup node. The backup node applies operations to its local state
and notifies the primary node. Once the primary node receives a
notification, it responds to the client.

to-end guarantee for a replicated key-value store without requiring
the programmer to simultaneously reason about both application
correctness and fault tolerance.

6. Case Study: Primary-Backup Transformer
In this section, we introduce the primary-backup replication

transformer, which takes a single-node system and returns a repli-
cated version of the system in the reordering semantics. A primary
node synchronously replicates requests to a backup node: when a
request arrives, the primary ensures that the backup has processed
it before applying it locally and replying to the client. Whenever
a client gets a response, the corresponding request has been pro-
cessed by both the primary and the backup. Pseudocode for the
primary-backup transformer is shown in Figure 11.

The primary-backup transformer’s correctness is partially spec-
ified in terms of traces the primary may produce: any sequence of
inputs and corresponding outputs produced by the primary node
is a sequence that could have occurred in the original single-node
system, and thus any property Φ of traces of the underlying single-
node system also holds on all traces at the primary node in the
transformed system. This result guarantees indistinguishability for
the primary-backup transformer.

The primary-backup transformer specification also relates the
backup node’s state to the primary node’s state. Because the primary
replicates entries synchronously, and one at a time, the backup can
fall arbitrarily behind the input stream at the primary. However, the
primary does not send a response to the client until the backup has
replicated the corresponding request. Thus, the state at the backup
is closely tied to that at the primary. In particular, we were able to
show that either the primary and the backup have the same state or
the backup’s state is one step ahead of the primary. This property

364

Table 1. Messages, inputs, and outputs used in Verdi’s implemen-
tation of Raft.

Name Purpose

Messages

AppendEntries Log Replication
AppendEntriesReply

RequestVote Leader Election
RequestVoteReply

Inputs ClientRequest Client inputs

Outputs ClientResponse Successful execution
NotLeader Resubmit

provides some intuitive guarantees about potential failure of the
primary: namely, that manual intervention could restore service
with the guarantee that any lost request must not have been ac-
knowledged. It makes sense that manual intervention is necessary
in the case of failure: the composed system is verified against the
reordering semantics, where the developer assumes that machine
crashes require manual intervention.

Once implemented and verified, the primary-backup transformer
can be used to construct replicated applications. Applying it to the
case study from Section 5 results in a replicated key-value store. The
resulting system is easy to reason about because of the transformer’s
indistinguishability result. For example, we were able to show (in
about 10 lines) that submitting a put request results in a response
that correctly reflects the put.

7. Case Study: Raft Replication Transformer
Fault-tolerant, consistent state machine replication is a classic prob-
lem in distributed systems. This problem has been solved with
distributed consensus algorithms, which guarantee that all nodes
in a system will agree on which commands the replicated state
machine has executed and in what order, and that each node has a
consistent copy of the state machine.

In Verdi, we can implement consistent state machine replication
as a system transformer. The consistent replication transformer lifts
a system designed for the state machine semantics into a system that
tolerates machine crashes in the failure semantics. We implemented
the replication transformer using the Raft consensus algorithm [30].
Our implementation of Raft in Verdi is described in Section 7.1.

A Verdi system transformer lifts a safety properties of an input
system into a new semantics. The consensus transformer provides
an indistinguishability result for linearizability, which states that any
possible trace of the replicated system is equivalent to some valid
trace of the underlying system under particular constraints about
when operations can be re-ordered. We have proved that Raft’s state
machine safety property implies linearizability; our proof of state
machine safety is still in progress as of this writing. We discuss this
result further in Section 7.2.

7.1 Raft Implementation
Raft is structured as a set of remote procedure calls (RPCs). In Verdi,
we implement each RPC as a pair of messages. Raft’s message type
is shown in Table 1. Raft divides time into terms of arbitrary length,
and guarantees that there can be at most one leader per term. If a
node n suspects that the leader has failed, that node advances its
term and attempts to become the leader by sending RequestVote
messages to every other node in the system. If a quorum of nodes
votes for n, then n becomes the leader for its term. Since nodes can
only vote for one leader in a given term, there is guaranteed to be
at most one leader per term.

Once a leader has been elected, it can begin replicating log en-
tries. A log entry stores a command (i.e. an input) for the underlying

I1

I2
I3 O1

O2

O3

[op1, op2, op3] X

[op1, op3, op2] X

[op2, op1, op3]

[op3, op1, op2]

τ = [I1, O1, I2, I3, O2, O3]

Figure 12. An example trace, with permitted and forbidden
operation orderings. Since O1 happens before I2 and I3, op1 must
happen before op2 and op3. The operations op2 and op3, however,
can happen in either order.

state machine, as well as the term in which it was created and a
monotonically increasing index. Entries are created by the leader in
response to ClientRequest inputs. When the leader creates an entry
e, it sends AppendEntries messages to every other node in order
to replicate e in other nodes’ logs. Once e is in a quorum of logs,
its command can safely be executed against the underlying state
machine. More details about Raft can be found in the original Raft
paper [30] and Ongaro’s thesis [29].

The Verdi implementation of Raft includes the basic Raft algo-
rithm, but does not include extensions of Raft which are described
in the paper and useful in practice. In particular, it does not include
log compaction, which allows a server to garbage-collect old log
entries to save space, or membership changes, which allow nodes to
be added and removed from a Raft cluster. We leave these features
for future work.

7.2 Raft Proof
As discussed above, the indistinguishability result for Raft is lineariz-
ability. Linearizability [12] guarantees that clients see a consistent
view of the state machine: clients see a consistent order in which
operations were executed, and any request issued after a particular
response is guaranteed to be ordered after that response.

We verified linearizability of the Verdi Raft implementation as
a consequence of Raft’s state machine safety property, which states
that every node applies the same state machine command at a given
index. We believe that this is the first formal proof (machine-checked
or otherwise) of Raft’s linearizability. A proof that state machine
safety holds for our implementation is currently in progress [37]. A
pencil and paper proof of state machine safety for a TLA model of
Raft was given in Ongaro’s thesis [29].

We formalized a general theory of linearizable systems in Coq as
follows. A trace τ of requests I1, . . . , In and responsesO1, . . . , Om

(where there is a total ordering on requests and responses) is lineariz-
able with respect to an underlying state machine if there exists a
trace of operations (i.e. request and response pairs) τ ′ such that: (1)
τ ′ is a valid, sequential execution of the underlying state machine
(meaning that each response is the one produced by running the state
machine on the trace); (2) every response in τ has a corresponding
operation in τ ′; and (3) if a response to an operation op1 occurs be-
fore a request for an operation op2 in τ , then op1 occurs before op2

in τ ′. Some examples of permitted and forbidden τ ′ for a particular
τ are shown in Figure 12. Note that the primary-backup transformer
described in Section 6 trivially provides linearizability: its traces
are traces of the underlying system and it does no reordering.

Raft’s I/O trace consists of ClientRequests and ClientResponses.
The key to the proof is that Raft’s internal log contains a linearized
ordering of operations. The desired underlying trace, then, is just
the list of operations in the order of the log. The rest of the proof
involves showing that this order of operations satisfies the conditions

365

Table 2. Verification effort: size of the specification, implemen-
tation, and proof, in lines of code (including blank lines and
comments).

System Spec. Impl. Proof

Sequence numbering 20 89 576
Key-value store 41 138 337
Primary-backup 20 134 1155
KV+PB 5 N/A 19
Raft (Linearizability) 170 520 4144
Verdi 148 220 2364

above. To prove condition (1), we show that the state machine state
is correctly managed by Raft and that entries are applied in the order
they appear in the log. Condition (2) follows from the fact that Raft
never issues a ClientResponse before the corresponding log entry is
applied to the state machine. Finally, condition (3) holds because
Raft only appends entries to the log: if a ClientResponse has already
been issued, then that entry is already in the log, so any subsequent
ClientRequest will be ordered after it in the log.

8. Evaluation
This section aims to answer the following questions:
• How much effort was involved in building the case studies

discussed above?

• To what extent do system transformers mitigate proof burden
when building modular verified distributed applications?

• Do Verdi applications correctly handle the faults they are de-
signed to tolerate?

• Can a verified Verdi application achieve reasonable performance
relative to analogous unverified applications?

8.1 Verification Effort
Table 2 shows the size of the specification, implementation, and
proof of each case study. The Verdi row shows the number of lines
in the shim, the network semantics from Section 3, and proofs of
reusable, common lemmas in Verdi. The KV+PB row shows the
additional lines of code required to state and prove a simple property
of the key-value store with the primary-backup transformer applied.
This line shows that verified system transformers mitigate proof
burden by preserving properties of their input systems.

8.2 Verification Experience
While verifying the case studies, we discovered several serious
errors in our system implementations. The most subtle of these
errors came from our implementation of Raft: servers could delete
committed entries when a complex sequence of failures occurred.
Such a sequence is unlikely to arise in regular testing, but proving
Raft in Verdi forced us to reason about all possible executions. The
Raft linearizability property we proved prevents such subtle errors
from going unnoticed.

8.3 Verification and Performance
We applied the consensus transformer described in Section 7 to the
key-value store described in Section 5; we call the composed system
vard.1 We performed a simple evaluation of its performance. We
ran our benchmarks on a three-node cluster, where each node had
eight 2.0 GHz Xeon cores, 8 GB main memory, and 7200 RPM,
500 GB hard drives. All the nodes were connected to a gigabit
switch and had ping times of approximately 0.1 ms. First, we ran

1 Pronounced var-DEE.

Table 3. A performance comparison of etcd and our vard.

Throughput
(req./s)

Latency
get (ms) put (ms)

etcd 38.9 205 198
vard 34.3 232 232

the composed system and killed the leader node; the system came
back as expected. Next, we measured the throughput and latency
of the composed system and compared it to etcd [6], a production
fault-tolerant key-value store written in the Go language which also
uses Raft internally. We used a separate node to send 100 random
requests using 8 threads; each request was either a put or a get on
a key uniformly selected from a set of 50.

As shown in Table 3, vard achieves comparable performance to
etcd. We believe that etcd has slightly better throughput and latency
because of better data structures and because requests are batched.
vard is not feature complete with respect to etcd, which uses differ-
ent internal data structures and a more complex network protocol.
Nonetheless, we believe this benchmark shows that a verified Verdi
application can achieve roughly equivalent performance compared
to existing, unverified alternatives.

9. Related Work
This section relates Verdi to previous approaches for building reli-
able distributed systems.

Proof assistants and distributed systems. EventML [32]
provides expressive primitives and combinators for implementing
distributed systems. EventML programs can be automatically
abstracted into formulae in the Logic of Events, which can then be
used to verify the system in NuPRL [5]. The ShadowDB project
implements a total-order broadcast service using EventML [36]. The
implementation is then translated into NuPRL and verified to cor-
rectly broadcast messages while preserving causality. A replicated
database is implemented on top of this verified broadcast service.
Unlike vard (described in Section 8), the database itself is unverified.

Bishop et al. [2] used HOL4 to develop a detailed model and
specification for TCP and the POSIX sockets API, show that their
model implements their specification, and validate their model
against existing TCP implementations. Rather than verifying the
network stack itself, in Verdi we chose to focus on verifying high-
level application correctness properties against network semantics
that are assumed to correctly represent the behavior of the network
stack. These two lines of work are therefore complementary.

Ridge [34] verified a significant component of a distributed
message queue, written in OCaml. His technique was to develop
an operational semantics for OCaml which included some basic
networking primitives, encode those semantics in the HOL4 theorem
prover, and prove that the message queue works correctly under
those semantics. Unlike in Verdi, the proofs for the system under
failure conditions were done only on paper.

Verdi’s system transformers enable decomposing both systems
and proofs. This allows developers to establish end-to-end correct-
ness guarantees of the implementation of their distributed systems,
from the low-level network semantics to a high-level replicated key-
value store, while retaining flexibility and modularity. The system
transformer abstraction could integrated into these other approaches;
for example, ShadowDB’s consensus layer could be implemented as
a system transformer along the lines of Verdi’s Raft implementation.

Ensemble. Ensemble [11] layers simple micro protocols to pro-
duce sophisticated distributed systems. Like Ensemble micro pro-
tocols, Verdi’s system transformers implement common patterns
in distributed systems as modular, reusable components. Unlike

366

Ensemble, Verdi’s systems transformers come with correctness the-
orems that translate guarantees made against one network semantics
to analogous guarantees against another semantics. Unlike Verdi, En-
semble enables systems built by stacking many layers of abstraction
to achieve efficiency equivalent to hand-written implementations
via cross-protocol optimizations. These micro protocols are man-
ually translated to IO automata and verified in NuPRL [13, 23].
In contrast, Verdi provides a unified framework that connects the
implementation and the formalization, eliminating the formality gap.

Verified SDN. Formal verification has previously been applied
to software-defined networking, which allows routing configurations
to be flexibly specified using a simple domain specific language
(see, e.g. Verified NetCore [9]). As in Verdi, verifying SDN con-
trollers involves giving a semantics for OpenFlow, switch hardware,
and network communication. The style of formalization and proof
in and Verdi are quite similar and address orthogonal problems.
Verified NetCore is concerned with correct routing protocol config-
uration, while Verdi is concerned with the correctness of distributed
algorithms that run on top of the network.

Specification Reasoning. There are many models for formaliz-
ing and specifying the correctness of distributed systems [7, 31, 35].
One of the most widely used models is TLA, which enables catching
protocol bugs during the design phase [20]. For example, Amazon
developers reported their experience of using TLA to catch speci-
fication bugs [27]. Another approach of finding specification bugs
is to use a model checker. For example, Zave applied Alloy [15]
to analyzing the protocol of the Chord distributed hash table [43].
Lynch [25] describes algorithm transformations which are similar
to Verdi’s verified system transformers.

On the other hand, Verdi focuses on ensuring that implemen-
tations are correct. While this includes the correctness of the un-
derlying algorithm, it goes further by also showing that the actual
running system satisfies the intended properties.

Model checking and testing. There is a rich literature in debug-
ging distributed systems. Run-time checkers such as Friday [8] and
D3S [24] allow developers to specify invariants of a running system
and detect possible violations on the fly or offline. Model checkers
such as Mace [16, 17], MoDist [40], and CrystalBall [38] explore
the space of executions to detect bugs in distributed systems. These
tools are useful for catching bugs and easy to use for developers, as
they only need to write invariants. On the other hand, Verdi’s proof
provide correctness guarantees.

For example, Mace provides a full suite of tools for building
and model checking distributed systems. Mace’s checker has been
applied to discover several bugs, including liveness violations, in
previously deployed systems. Mace provides mechanisms to explic-
itly break abstraction boundaries so that lower layers in a system
can notify higher layers of failures. Verdi does not provide liveness
guarantees nor mechanisms to break abstraction boundaries, but
enables stronger guarantees via full formal verification.

Verification. Several major systems implementations have been
verified fully formally in proof assistants. The CompCert C com-
piler [22] was verified in Coq and repeatedly shown to be more
reliable than traditionally developed compilers [21, 41]. Our system
transformers are directly inspired by the translation proofs in Com-
pCert, but adapted to handle network semantics where faults may
occur.

The Reflex framework [33] provides a domain-specific language
for reasoning about the behavior of reactive systems. By carefully
restricting the DSL, the authors were able to achieve high levels
of proof automation. Bedrock [4] and Ynot [26] are verification
frameworks based on separation logic and are useful for verifying
imperative programs in Coq, but also consider only the behavior of
a single node and do not model faults. These frameworks consider
only the behavior of a single node and do not model faults.

10. Conclusion
This paper presented Verdi, a framework for building formally
verified distributed systems. Verdi’s key conceptual contribution
is the use of verified system transformers to separate concerns of
application correctness and fault tolerance, which simplifies the
task of implementing and verifying distributed systems end-to-end.
This modularity is enabled by Verdi’s encoding of distinct fault
models as separate network semantics. We demonstrated how to
apply Verdi to writing and verifying several practical applications,
including the Raft state replication library and the vard fault-tolerant
key-value store, with the help of verified system transformers. These
applications provide strong correctness guarantees and acceptable
performance while imposing reasonable verification burden. We
believe that Verdi provides a promising first step toward our over-
arching goal of easing the burden for programmers to implement
correct, high-performance, fault-tolerant distributed systems.

Acknowledgments
The authors thank Steve Anton, Richard Eaton, Dan Grossman, Eric
Mullen, Diego Ongaro, Dan R. K. Ports, Vincent Rahli, Daniel T.
Ricketts, and Ryan Stutsman. We also thank Nate Foster for shep-
herding our paper, and the anonymous reviewers for their helpful
and insightful feedback.

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. CNS-0963754 and the Graduate
Research Fellowship Program under Grant No. DGE-1256082. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. This material
is based on research sponsored by the United States Air Force under
Contract No. FA8750-12-C-0174 and by DARPA under agreement
number FA8750-12-2-0107. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

References
[1] Amazon. Summary of the Amazon EC2 and Amazon RDS service

disruption in the US East Region, Apr. 2011. http://aws.amazon.com/
message/65648/.

[2] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and
K. Wansbrough. Engineering with logic: HOL specification and
symbolic-evaluation testing for TCP implementations. In Proceed-
ings of the 33rd ACM Symposium on Principles of Programming
Languages (POPL), pages 55–66, Charleston, SC, Jan. 2006.

[3] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: An
engineering perspective. In Proceedings of the 26th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (PODC),
pages 398–407, Portland, OR, Aug. 2007.

[4] A. Chlipala. Mostly-automated verification of low-level programs
in computational separation logic. In Proceedings of the 2011
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 234–245, San Jose, CA, June 2011.

[5] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing Mathemat-
ics with The Nuprl Proof Development System. Prentice Hall, 1986.

[6] CoreOS. etcd: A highly-available key value store for shared configura-
tion and service discovery, 2014. https://github.com/coreos/etcd.

[7] S. J. Garland and N. Lynch. Using I/O automata for developing
distributed systems. In Foundations of Component-based Systems.
Cambridge University Press, 2000.

[8] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica. Friday:
Global comprehension for distributed replay. In Proceedings of the 4th
Symposium on Networked Systems Design and Implementation (NSDI),
pages 285–298, Cambridge, MA, Apr. 2007.

367

http://aws.amazon.com/message/65648/
http://aws.amazon.com/message/65648/
https://github.com/coreos/etcd

[9] A. Guha, M. Reitblatt, and N. Foster. Machine-verified network
controllers. In Proceedings of the 2013 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages
483–494, Seattle, WA, June 2013.

[10] Z. Guo, S. McDirmid, M. Yang, L. Zhuang, P. Zhang, Y. Luo,
T. Bergan, P. Bodik, M. Musuvathi, Z. Zhang, and L. Zhou. Failure
recovery: When the cure is worse than the disease. In Proceedings
of the HotOS XIV, Santa Ana Pueblo, NM, May 2013.

[11] M. Hayden. The Ensemble System. PhD thesis, Cornell University,
1998.

[12] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages
and Systems, 12(3):463–492, 1990.

[13] J. J. Hickey, N. Lynch, and R. van Renesse. Specifications and
proofs for Ensemble layers. In Proceedings of the 15th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), pages 119–133, York, UK, Mar. 2009.

[14] High Scalability. The updated big list of articles on the Amazon outage,
May 2011. http://highscalability.com/blog/2011/5/2/the-

updated-big-list-of-articles-on-the-amazon-outage.html.
[15] D. Jackson. Software Abstractions: Logic, Language, and Analysis.

MIT Press, Feb. 2012.
[16] C. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. Vahdat. Mace:

Language support for building distributed systems. In Proceedings
of the 2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 179–188, San Diego, CA,
June 2007.

[17] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, death,
and the critical transition: Finding liveness bugs in systems code. In
Proceedings of the 4th Symposium on Networked Systems Design and
Implementation (NSDI), pages 243–256, Cambridge, MA, Apr. 2007.

[18] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, M. Norrish, R. Kolanski, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal verification of an OS kernel.
In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP), pages 207–220, Big Sky, MT, Oct. 2009.

[19] L. Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley Professional, July
2002.

[20] L. Lamport. Thinking for programmers, Apr. 2014.
http://channel9.msdn.com/Events/Build/2014/3-642.

[21] V. Le, M. Afshari, and Z. Su. Compiler validation via equivalence
modulo inputs. In Proceedings of the 2014 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages
216–226, Edinburgh, UK, June 2014.

[22] X. Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7):107–115, July 2009.

[23] X. Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hayden, K. Birman,
and R. L. Constable. Building reliable, high-performance communi-
cation systems from components. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles (SOSP), pages 80–92,
Kiawah Island, SC, Dec. 1999.

[24] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F.
Kaashoek, and Z. Zhang. D3S: Debugging deployed distributed
systems. In Proceedings of the 5th Symposium on Networked Systems
Design and Implementation (NSDI), pages 423–437, San Francisco,
CA, Apr. 2008.

[25] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1996. ISBN 1558603484.

[26] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal.
Ynot: Dependent types for imperative programs. In Proceedings of

the 13th ACM SIGPLAN International Conference on Functional
Programming (ICFP), Victoria, British Columbia, Canada, Sept. 2008.

[27] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker,
and M. Deardeuff. Use of formal methods at Amazon Web
Services, Sept. 2014. http://research.microsoft.com/en-

us/um/people/lamport/tla/formal-methods-amazon.pdf.
[28] NYTimes. Amazon’s trouble raises cloud computing doubts, Apr. 2011.

http://www.nytimes.com/2011/04/23/technology/23cloud.html.

[29] D. Ongaro. Consensus: Bridging Theory and Practice. PhD thesis,
Stanford University, Aug. 2014.

[30] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In Proceedings of the 2014 USENIX Annual Technical
Conference, pages 305–319, Philadelphia, PA, June 2014.

[31] J. L. Peterson. Petri nets. ACM Computing Surveys, pages 223–252,
Sept. 1977.

[32] V. Rahli. Interfacing with proof assistants for domain specific
programming using EventML. In Proceedings of the 10th International
Workshop On User Interfaces for Theorem Provers, Bremen, Germany,
July 2012.

[33] D. Ricketts, V. Robert, D. Jang, Z. Tatlock, and S. Lerner. Automating
formal proofs for reactive systems. In Proceedings of the 2014
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 452–462, Edinburgh, UK, June 2014.

[34] T. Ridge. Verifying distributed systems: The operational approach. In
Proceedings of the 36th ACM Symposium on Principles of Program-
ming Languages (POPL), pages 429–440, Savannah, GA, Jan. 2009.

[35] D. Sangiorgi and D. Walker. PI-Calculus: A Theory of Mobile
Processes. Cambridge University Press, New York, NY, USA, 2001.
ISBN 0521781779.

[36] N. Schiper, V. Rahli, R. van Renesse, M. Bickford, and R. L. Constable.
Developing correctly replicated databases using formal tools. In
Proceedings of the 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 395–406, Atlanta,
GA, June 2014.

[37] Verdi. Verdi, 2014. https://github.com/uwplse/verdi.

[38] M. Yabandeh, N. Knežević, D. Kostić, and V. Kuncak. CrystalBall: Pre-
dicting and preventing inconsistencies in deployed distributed systems.
In Proceedings of the 5th Symposium on Networked Systems Design and
Implementation (NSDI), pages 229–244, San Francisco, CA, Apr. 2008.

[39] J. Yang and C. Hawblitzel. Safe to the last instruction: Automated
verification of a type-safe operating system. In Proceedings of the 2010
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 99–110, Toronto, Canada, June 2010.

[40] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,
L. Zhang, and L. Zhou. MODIST: Transparent model checking of
unmodified distributed systems. In Proceedings of the 6th Symposium
on Networked Systems Design and Implementation (NSDI), pages
213–228, Boston, MA, Apr. 2009.

[41] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and under-
standing bugs in C compilers. In Proceedings of the 2011 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 283–294, San Jose, CA, June 2011.

[42] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang, P. U.
Jain, and M. Stumm. Simple testing can prevent most critical failures:
An analysis of production failures in distributed data-intensive systems.
In Proceedings of the 11th Symposium on Operating Systems Design
and Implementation (OSDI), pages 249–265, Broomfield, CO, Oct.
2014.

[43] P. Zave. Using lightweight modeling to understand Chord. ACM SIG-
COMM Computer Communication Review, 42(2):49–57, Apr. 2012.

368

http://highscalability.com/blog/2011/5/2/the-updated-big-list-of-articles-on-the-amazon-outage.html
http://highscalability.com/blog/2011/5/2/the-updated-big-list-of-articles-on-the-amazon-outage.html
http://channel9.msdn.com/Events/Build/2014/3-642
http://research.microsoft.com/en-us/um/people/lamport/tla/formal-methods-amazon.pdf
http://research.microsoft.com/en-us/um/people/lamport/tla/formal-methods-amazon.pdf
http://www.nytimes.com/2011/04/23/technology/23cloud.html
https://github.com/uwplse/verdi

	Introduction
	Overview
	Specification
	Implementation
	Verifying the Lock Service Application
	Verified System Transformers
	Running the Lock Service Application
	Summary

	Network Semantics
	Verified System Transformers
	Sequence Numbering Transformer
	Correctness of Sequence Numbering
	Ghost Variables and System Transformers

	Case Study: Key-Value Store
	Case Study: Primary-Backup Transformer
	Case Study: Raft Replication Transformer
	Raft Implementation
	Raft Proof

	Evaluation
	Verification Effort
	Verification Experience
	Verification and Performance

	Related Work
	Conclusion

