
Array Shadow State Compression for Precise
Dynamic Race Detection

James R. Wilcox
Computer Science and Engineering

University of Washington
Seattle, WA, USA

jrw12@cs.washington.edu

Parker Finch
Cognius

Boston, MA, USA
finch.parker@gmail.com

Cormac Flanagan
Computer Science Dept.

University of California, Santa Cruz
Santa Cruz, CA, USA

cormac@cs.ucsc.edu

Stephen N. Freund
Computer Science Dept.

Williams College
Williamstown, MA, USA

freund@cs.williams.edu

Abstract—Precise dynamic race detectors incur significant
time and space overheads, particularly for array-intensive pro-
grams, due to the need to store and manipulate analysis (or
shadow) state for every element of every array. This paper
presents SLIMSTATE, a precise dynamic race detector that uses
an adaptive, online algorithm to optimize array shadow state
representations. SLIMSTATE is based on the insight that common
array access patterns lead to analogous patterns in array shadow
state, enabling optimized, space efficient representations of array
shadow state with no loss in precision. We have implemented
SLIMSTATE for Java. Experiments on a variety of benchmarks
show that array shadow compression reduces the space and time
overhead of race detection by 27% and 9%, respectively. It
is particularly effective for array-intensive programs, reducing
space and time overheads by 35% and 17%, respectively, on
these programs.

Keywords—concurrency, data race detection, dynamic analysis

I. INTRODUCTION

The widespread adoption of multi-core processors necessi-
tates a software infrastructure that can reliably exploit multiple
threads of control. Developing reliable multithreaded software
is extremely difficult, however, due to problems caused by
unexpected thread interference, which are notoriously difficult
to detect, reproduce, and eliminate.

Perhaps the most fundamental interference problem is a
race condition, which occurs when two threads concurrently
access the same location, where at least one access is a write.
Race conditions typically reflect synchronization errors, and
they cause highly unintuitive behavior under relaxed memory
models [1]. Moreover, reasoning about richer concurrency
properties, such as atomicity, serializability, determinism, co-
operability, functional correctness, etc., often requires first
identifying or limiting where races may occur.

Much prior work has explored analyses for race detection.
Static analyses (e.g. [2], [3], [4]) can offer strong guarantees,
but due to computability limitations either miss races or report
false alarms, and they may not scale to large systems.

A complementary approach is to use dynamic analyses,
which can be precise for the observed trace, meaning that
they report errors if and only if there is a race condition in
the observed trace of the target program. A variety of imple-
mentation techniques have been developed for precise dynamic
race detection, including vector clocks [5], [6], epochs [7],
accordion clocks [8], and others [9]. However, the space

and time overhead of precise dynamic race detectors is still
prohibitive for many applications.

For example, FASTTRACK’s epoch-based representation of
the happens-before relation [7] exhibits slowdowns of roughly
an order of magnitude and even greater increases in memory
usage, particularly for array-intensive programs. Thus, while
precise dynamic analyses are critical for detecting data races
and other interference problems in multithreaded systems, their
current performance limitations preclude their widespread use.

For many programs, much of this space overhead is due to
race detection for arrays. We focus on reducing that overhead.
To detect races on an array a, a dynamic race detector must
record sufficient information about the access history of each
array element a[i] to determine if a subsequent access to a[i]
is in a race with any previous access to it. Access information
is typically stored in an array shadow S, where S[i] represents
the access history for a[i]. For example, in the common case
for the FASTTRACK race detector, S[i] contains the epoch (the
thread identifier and clock) of the last access to a[i].

Programs often access arrays by readily identifiable pat-
terns, and those patterns lead to analogous patterns in their
shadow arrays. We present a new race detection algorithm,
SLIMSTATE, that dynamically identifies these patterns and uses
them to compress shadow arrays. For example, suppose a
synchronization-free region (SFR) of one thread traverses all
odd elements in a newly allocated array a of size n while a
concurrent SFR traverses all even elements. Once both SFRs
have completed, all odd elements in S will be identical, as
will all even elements. In this case, rather than requiring n
shadow elements, SLIMSTATE represents S as a two-element
array T , where the shadow state for a[i] is now T [i mod 2],
thus reducing the number of shadow locations from n, which
could be very large, to 2.

This compressed representation enables a corresponding
reduction in the number of race checks. As the first SFR
above traverses all odd elements of a, rather than performing
a separate race check on each access, SLIMSTATE builds a
footprint {1, 3, 5, . . .} of accesses to a by that thread without
yet verifying those accesses are race free. SLIMSTATE commits
that footprint to the shadow state and verifies race freedom at
the thread’s next synchronization operation. Since all indices
in this footprint map to T [1], SLIMSTATE only needs to check
and update that single shadow location, in contrast to the n/2
checks and updates necessary with a traditional shadow array

representation.

If a later SFR accesses a different footprint of the ar-
ray, SLIMSTATE appropriately refines the compressed shadow
representation T to avoid any missed races or false alarms.
In contrast, prior techniques for compressing shadow state
(e.g. [10], [11], [6], [12]) are prone to false alarms, as discussed
in Section VII below.

For a collection of array-intensive Java benchmarks —
those for which at least 50% of their data belongs to arrays —
SLIMSTATE reduces the heap footprint by 35% and improves
speed by 17%. SLIMSTATE is most effective on array-intensive
programs that closely adhere to the access patterns currently
recognized. For others, our analysis currently finds less op-
portunity for compression. Thus, SLIMSTATE demonstrates
the potential of using access patterns to compress shadow
state and also opens the door to further exploration of more
sophisticated pattern matching, adaptive mechanisms to target
compression where it is most likely to pay off, and static
analyses for computing footprints and patterns ahead of time
to reduce the need to dynamically infer them. SLIMSTATE
may also be adaptable to shadow compression for objects, but
the relatively small size of objects when compared to arrays
will necessitate different strategies than those we have found
effective for arrays.

Other race detection algorithms that track shadow state
for each memory location may reap similar benefits from our
compression technique. Moreover, many dynamic analyses for
a variety of correctness properties, including atomicity [13],
[14], [15], [16], determinism [17], [18], and cooperability [19],
also maintain a shadow array for each array in the target
program. We expect that shadow array compression may yield
comparable benefits for these analyses.

Contributions. The primary contributions of this paper are:

• We demonstrate that array shadow states contain redun-
dancy due to patterned accesses.

• We present the SLIMSTATE precise dynamic race de-
tection algorithm, which partitions arrays into groups of
indices with identical shadow states. SLIMSTATE infers
those partitions with a dynamic analysis that tracks the
footprint of array accesses within each synchronization-
free region. (Section III and Section IV).

• We explore the design space for representing partitions
and footprints, using techniques such as ranges, strided
ranges, and bit sets. (Section V-A).

• We develop an implementation of SLIMSTATE for Java,
and we report its performance on a variety of benchmark
suites. (Section V-B.)

• For array-intensive programs, SLIMSTATE reduces the
minimum heap size by 35% when compared to FAST-
TRACK. (Section VI.) SLIMSTATE also reduces the run-
ning time by 17% for those programs.

II. REVIEW OF DYNAMIC RACE DETECTION

A race condition occurs when two threads concurrently
access a memory location, where at least one of those accesses
is a write. Accesses are considered concurrent if there is
no “synchronization dependence” between them, such as the
dependence between a lock release by one thread and a sub-
sequent acquire by a different thread. These synchronization

Thread A Thread B

x = 0

rel(m)

acq(m)

x = 1

x = 2

A@1

A@4

A@4

⟨4,0⟩ ⟨0,8⟩ ⟨0,0⟩

⟨4,0⟩ ⟨0,8⟩ ⟨0,0⟩

⟨5,0⟩ ⟨0,8⟩ ⟨4,0⟩

⟨5,0⟩ ⟨4,8⟩ ⟨4,0⟩

⟨5,0⟩ ⟨4,8⟩ ⟨4,0⟩

 Race!

A@4

B@8

A@5

check

check

CA CB S

check

Lm

Fig. 1. Race detection using vector clocks and epochs.

dependencies form a partial order over the instructions in a
trace called the happens-before relation [20].

Precise race detectors typically use vector clocks (VCs)
[20], [5] to represent the happens-before relation. Given a
system in which each thread has a unique identifier t ∈ Tid , a
vector clock V : Tid → Nat records a clock for each thread
in the system. Vector clocks are partially ordered (v) in a
point-wise manner, with an associated join operation (t):

V1 v V2 iff ∀t. V1(t) ≤ V2(t)

V1 tV2 = λt. max (V1(t),V2(t))

A dynamic analysis based on VCs maintains a vector clock
Ct for each thread t. The clock entry Ct(t) records thread
t’s current time. For any other thread u, the clock entry Ct(u)
records the clock for the last operation of thread u that happens
before the current operation of thread t. Figure 1 illustrates the
shadow state CA and CB for a trace of operations performed
by threads A and B. The additional shadow state component
Lm records the vector clock of the last release of lock m. Thus,
when thread A performs rel(m), Lm is updated to CA =
〈4, 0〉, and CA is incremented to 〈5, 0〉 to reflect that later
steps of A happen after that release. When thread B performs
acq(m), CB is joined via t with Lm, reflecting that later steps
of B happen after the release by A.

Following the FASTTRACK algorithm [7], the shadow state
component Sx contains the epoch t@c to indicate that the last
access to x was by thread t when t’s clock was c. An epoch
t@c happens before a vector clock V (t@c � V) if and only if
the clock of the epoch is less than or equal to the corresponding
clock in the vector.

t@c � V iff c ≤ V (t)

A later access to x by thread u is race-free provided Sx � Cu.1
For example, at the second access to x in Figure 1, Sx = A@4
and CB = 〈4, 8〉. Since 4 ≤ CB(A) = 4, this access is race
free. At the third access to x, Sx = B@8 and CA = 〈5, 0〉.
Since 8 6≤ CA(B) = 0, a race condition exists.

III. SHADOW COMPRESSION & CHECK COALESCING

As discussed above, dynamic race detectors typically main-
tain shadow state for each memory location, which incurs
significant overhead. FASTTRACK’s epochs are perhaps the

1Due to space limitations, this discussion does not distinguish reads from
writes and assumes all accesses to a variable conflict. Our implementation
handles concurrent reads by tracking reads and writes in separate epochs and
by using FASTTRACK’s adaptive epoch/VC representation to record concurrent
reads when they are observed [7]. These extensions are straightforward and
pose no technical challenges. (See Section V.)

2

Thread A Thread B

acq(m)
a[0]=0
a[1]=1
a[2]=2
a[3]=3
rel(m)

acq(m)
a[0]=0
a[1]=1
a[2]=2
a[3]=3
rel(m)

acq(m)
a[0]=0
a[1]=1
rel(m)

B@2 B@2 B@2 B@2

B@2 B@2 B@2 B@2

A@5 B@2 B@2 B@2

⟨5,3⟩ ⟨0,8⟩ ⟨0,0⟩

⟨5,3⟩ ⟨0,8⟩ ⟨0,0⟩

⟨5,3⟩ ⟨0,8⟩ ⟨0,0⟩

⟨5,3⟩ ⟨0,8⟩ ⟨0,0⟩

⟨5,3⟩ ⟨0,8⟩ ⟨0,0⟩

⟨5,3⟩ ⟨0,8⟩ ⟨0,0⟩

⟨6,3⟩ ⟨0,8⟩ ⟨5,3⟩

⟨6,3⟩ ⟨5,8⟩ ⟨5,3⟩

⟨6,3⟩ ⟨5,8⟩ ⟨5,3⟩

⟨6,3⟩ ⟨5,8⟩ ⟨5,3⟩

⟨6,3⟩ ⟨5,8⟩ ⟨5,3⟩

⟨6,3⟩ ⟨5,8⟩ ⟨5,3⟩

⟨6,3⟩ ⟨5,9⟩ ⟨5,8⟩

⟨6,8⟩ ⟨5,9⟩ ⟨5,8⟩

⟨6,8⟩ ⟨5,9⟩ ⟨5,8⟩

⟨6,8⟩ ⟨5,9⟩ ⟨5,8⟩

⟨6,8⟩ ⟨5,9⟩ ⟨5,8⟩

A@5 A@5 B@2 B@2

A@5 A@5 A@5 B@2

A@5 A@5 A@5 A@5

A@5 A@5 A@5 A@5

A@5 A@5 A@5 A@5

B@8 A@5 A@5 A@5

B@8 B@8 A@5 A@5

B@8 B@8 B@8 A@5

B@8 B@8 B@8 B@8

B@8 B@8 B@8 B@8

B@2
B@2

B@2

B@2

B@2

B@2

A@5

A@5

A@5

A@5

A@5

A@5

B@8

check

check

check

check

check

check

check

check

check

check

{ } { }
{ } { }
{0} { }
{0,1} { }
{0,1,2} { }
{0,1,2,3} { }
{ } { }
{ } { }
{ } {0}
{ } {0,1}
{ } {0,1,2}
{ } {0,1,2,3}
{ } { }
{ } { }
{0} { }
{0,1} { }
{ } { }

CA CB S T FA FBLm

B@8 B@8 B@8 B@8

A@6 B@8 B@8 B@8

A@6 A@6 B@8 B@8

check

A@6 A@6 B@8 B@8

B@8

B@8

B@8

A@6 B@8

refine,
check

check

Fig. 2. Full and compressed shadow state for patterned accesses to an array.

most lightweight representation for precise race detection but
can still lead to an order of magnitude or more increase in
memory footprint, particularly for array-intensive programs.
For example, a FASTTRACK implementation for Java [7] that
supports concurrent reads maintains two epochs encoded as
integers, and a (possibly null) reference to a VC, for each
element in an array, even if those elements are one byte each.

SLIMSTATE significantly reduces array shadow state over-
head by eliminating redundancy via state compression. Fig-
ure 2 provides a simple example of how array access patterns in
the target program induce corresponding patterns in the shadow
array. Two threads A and B iterate over elements in an array
a protected by the lock m. We show the FASTTRACK shadow
state CA, CB , Lm, and S for each step in the execution, where
S[i] records the epoch of the last access to a[i].

Note two key aspects of this trace: (1) at each synchro-
nization operation above the dashed line, all elements in the
shadow array S are identical; and (2) within each of those
critical sections, the checker performs four identical checks,
namely the check B@2 � 〈5, 3〉 for thread A’s writes, and
the check A@5 � 〈5, 8〉 for thread B’s writes.

SLIMSTATE dynamically identifies such patterns and uses
them to compress the array shadow S into a smaller represen-
tation T . Since S[0], . . . S[3] are identical at synchronization
operations, SLIMSTATE uses a single shadow location T [0] to
represent all of S[0], . . . S[3]. To do this, SLIMSTATE does not
immediately perform a separate race check on each access to
a; instead, for each thread t, SLIMSTATE builds a footprint Ft

of a-indices that thread t has accessed since its last synchro-
nization operation. When each thread t exits its first critical
section, the footprint Ft = {0, 1, 2, 3} contains all indices
corresponding to shadow state T [0]. In this case SLIMSTATE
performs one race check T [0] � Ct, which verifies all accesses
to a[0], . . . , a[3] are race-free; SLIMSTATE then updates

one shadow location T [0] to t@Ct(t), which simultaneously
records the epoch of the last access to all of a[0], . . . , a[3].
We refer to this as committing the footprint.

Of course, threads may access arrays in more complex
patterns as well. For example, multiple threads may concur-
rently access disjoint blocks of elements, two threads may
concurrently access alternating elements, a thread may only
traverse some prefix of the array, and so on. SLIMSTATE is
designed to maintain full precision in all cases by dynamically
refining its compressed shadow representation T to precisely
represent the original shadow array S regardless of how the
underlying array has been accessed.

For example, at the end of the third critical section in
Figure 2, footprint FA = {0, 1} does not cover all indices
corresponding to shadow location T [0]. Thus T is refined to
have two locations, where T [0] corresponds to indices 0 and
1, and T [1] corresponds to indices 2 and 3. The commit for
A again requires only one check and update to T [0]. If a
thread touched every array element within a critical section,
the subsequent commit would check and update T [0] and T [1].

SLIMSTATE initially uses the coarse representation of only
a single shadow state to represent all elements in an array,
and then refines that representation as necessary. In the worst
case, SLIMSTATE may need a fine representation where each
shadow location in S is maintained separately, in which case
|T | = |S|. However, our experimental results show that
SLIMSTATE is often able to find more compact yet fully
precise representations.

Since our algorithm defers a check until after the access,
a race may not be reported until the end of the current SFR.
However, this is a reasonable tradeoff for better scalability and
performance in many situations, since identifying the memory
location and the enclosing SFR is often sufficient to understand
and fix the race.

3

FASTTRACK Analysis SLIMSTATE Analysis

σ ∈ FT-State = (C,L, S) where τ ∈ SS-State = (C,L, F, P, T) where
C : Tid → VC
L : Lock → VC
S : Index → Epoch

C : Tid → VC
L : Lock → VC
F : Tid → 2Index

P : partition of Index
T : P → Epoch

σ →b σ′ τ ⇒b τ ′

[FT ACCESS]
Si � Ct S′ = S[i := Et]

(C,L, S)→acc(t,i) (C,L, S′)

[SS ACCESS]
F ′ = F [t := F (t) ∪ {i}]

(C,L, F, P, T)⇒acc(t,i) (C,L, F ′, P, T)

[FT ACQUIRE]
C′ = C[t := Ct t Lm]

(C,L, S)→acq(t,m) (C′, L, S)

[SS ACQUIRE]
F (t) = ∅ C′ = C[t := Ct t Lm]

(C,L, F, P, T)⇒acq(t,m) (C′, L, F, P, T)

[FT RELEASE]
L′ = L[m := Ct]
C′ = C[t := inct(Ct)]

(C,L, S)→rel(t,m) (C′, L′, S)

[SS RELEASE]

F (t) = ∅
L′ = L[m := Ct]
C′ = C[t := inct(Ct)]

(C,L, F, P, T)⇒rel(t,m) (C′, L′, F, P, T)

τ V τ ′

[SS COMMIT]
p ∈ P
p ⊆ Ft

F ′ = F [t := Ft \ p]
Tp � Ct

T ′ = T [p := Et]

(C,L, F, P, T) V (C,L, F ′, P, T ′)

[SS REFINE]
P and P ′ are partitions of Index
∀i ∈ Index . Tϕ(P,i) = T ′ϕ(P ′,i)

(C,L, F, P, T) V (C,L, F, P ′, T ′)

τ ⇒ω τ ′

[SS CHANGE 1]
τ V τ ′ ⇒ω τ ′′

τ ⇒ω τ ′′

[SS CHANGE 2]
τ ⇒ω τ ′ V τ ′′

τ ⇒ω τ ′′

Fig. 3. FASTTRACK and SLIMSTATE analysis states and transition rules, where Et = t@Ct(t).

IV. SLIMSTATE ANALYSIS DETAILS

We now formalize the SLIMSTATE algorithm and prove
that its optimizations do not compromise precision.

A. Multithreaded Program Traces

An execution trace ω captures the execution of a multi-
threaded program by listing the sequence of operations per-
formed by its threads. Each operation of a thread t ∈ Tid
can acquire or release a lock m ∈ Lock or access index
i ∈ Index = {0, . . . , n−1} of a single global array:

ω ∈ Trace = Operation∗

b ∈ Operation = acc(t, i) | acq(t,m) | rel(t,m)

The simplicity of our execution model is for presentation
clarity only. The actual implementation, as described in Sec-
tion V, is significantly more complex because it must handle
the full Java bytecode language and support arbitrarily many
arrays and objects, other synchronization mechanisms, and
non-conflicting concurrent reads. In this section, we elide these
nonessential details in order to clearly present the key ideas of
precise dynamic array shadow compression.

B. FASTTRACK Algorithm

Figure 3 summarizes the FASTTRACK algorithm adapted
for our idealized trace language. Each FASTTRACK analysis
state σ = (C,L, S) includes the current vector clock Ct of
each thread t; the vector clock Lm for the last release of each
lock m; and the epoch Si for the last access to index i of the
global array. The initial analysis state is

σ0 = (λt.inct(⊥V), λm.⊥V , λi.⊥e)

where ⊥e refers to a minimal epoch 0@0, ⊥V is the minimal
VC (λt. 0), and

inct(V) = λu. if u = t then V (u) + 1 else V (u)

The rule [FT ACCESS] for acc(t, i) compares the epoch Si

with thread t’s vector clock Ct; if this check fails, the analysis
get stuck, reflecting a detected race condition. Otherwise
this rule updates Si to the epoch Et of thread t, where
Et = t@Ct(t). We use S[i := Et] to denote the function
that is identical to S, except that it maps i to Et. The rule
[FT ACQUIRE] for acq(t,m) simply joins Lm, the vector clock
of the last release of lock m, with the current thread’s clock
Ct. Conversely, rule [FT RELEASE] for rel(t, i) updates Lm

with Ct and increments the t-component of Ct.

A trace ω = b1 . . . bj is race free under FASTTRACK if it
can be successfully analyzed by these rules without getting
stuck, i.e. there exist states σ1, . . . , σj such that σ0 →b1

σ1 →b2 · · · →bj σj , which we abbreviate σ0 →ω σj .

C. SLIMSTATE Algorithm

The SLIMSTATE algorithm in Figure 3 represents the
shadow array S in a more space efficient manner as the map
T : P → Epoch . Here, P is some partition of Index , which
means P is a set of parts, where each part p ∈ P is a subset
of Index and each index i ∈ Index is in exactly one part in
P . Thus, T contains an epoch Tp for each part p ∈ P .

In the ideal case, as in the first two critical sections in Fig-
ure 2, the partition COARSE = {Index} contains a single part
Index , and thus T contains a single epoch TIndex that applies
to all indices in the array. At the other extreme, P is the trivial
partition FINE = {{i} | i ∈ Index} and T contains a separate
epoch T{i} for each index i, meaning |dom(T)| = |dom(S)| =
|Index |. Various other partitions are of course possible. For
example, partition P = {{0, 2, 4, . . .}, {1, 3, 5, . . .}} divides
T into two epochs for the even and odd indices in the global
array, and {{0, 1}, {2, 3}} characterizes the refined partition at
the end of Figure 2.

SLIMSTATE also maintains a footprint Ft ⊆ Index record-
ing all indices accessed during thread t’s current SFR. Each

4

array access extends this footprint via rule [SS ACCESS]. A
thread’s footprint must be committed into T before it performs
any synchronization operation, as captured via antecedent
Ft = ∅ in rules [SS ACQUIRE] and [SS RELEASE].

SLIMSTATE’s analysis state is represented as a five-tuple
(C,L, F, P, T), as shown in Figure 3, and the relation ⇒b

describes how the SLIMSTATE state is updated for each
observed event b of the target program.

Footprint commits are handled via the relation V defined
via [SS REFINE] and [SS COMMIT]. Rule [SS REFINE] changes
the partition P while still preserving the epoch for each index.
Here, ϕ(P, i) denotes the part p ∈ P that contains i. This rule
enables the partition P to be refined so that a footprint Ft is
exactly the union of some parts p1, . . . , pj in P . In this case,
we say that P is sufficiently precise for the footprint Ft.

Once the partition is sufficiently precise for a footprint Ft,
rule [SS COMMIT] can commit each part p ⊆ Ft. The rule
checks that accesses to p are race-free (Tp � Ct), updates
each Tp for these accesses, and removes p from Ft. If the
check Tp � Ct fails, the analysis gets stuck, reflecting a race.

Finally, the rules [SS CHANGE 1] and [SS CHANGE 2] en-
able multiple V steps to be performed either before or after
each ⇒b step. The SLIMSTATE algorithm is nondeterministic
about when V steps occur; as described in Section V, our
implementation determinizes this algorithm by deferring com-
mits as long as possible to optimize representation efficiency
based on the largest footprints possible.

SLIMSTATE does not check for a race on an access to
an index i immediately. Instead i is added to the accessing
thread’s footprint, and the race is detected later when that
footprint is committed. We say that state τ = (C,L, F, P, T)
has a latent race on i if i is in two footprints simultaneously
or if i is in a footprint that, when committed, will reveal a
race; that is, if:

1) ∃t, u ∈ Tid . t 6= u ∧ i ∈ Ft ∩ Fu, or
2) ∃t ∈ Tid . i ∈ Ft ∧ Tϕ(P,i) 6� Ct.

The initial SLIMSTATE state is

τ0 = (λt.inct(⊥V), λm.⊥V , λt.∅,COARSE,⊥T)

where ⊥T maps Index to ⊥e. A trace ω is race free under
SLIMSTATE if there exists a state τ with no latent races such
that τ0 ⇒ω τ .

D. SLIMSTATE Precision

We now prove that SLIMSTATE is a precise race detector
by showing that it behaves the same as FASTTRACK, which
previous work has shown to be precise [7]. We begin by
introducing the following functions, α and γ, which map
FASTTRACK states to SLIMSTATE states, and vice versa:

α : FT-State→ SS-State
α(C,L, S) = (C,L, λt. ∅, FINE, T) where T{i} = Si

γ : SS-State→ FT-State
γ(C,L, F, P, V) = (C,L, S) where

Si =

{
Et if i ∈ Ft for some t
Tϕ(P,i) if ∀t. i 6∈ Ft

Note that γ is well defined only for states with no latent races.
We now show that each FASTTRACK transition corresponds
to a SLIMSTATE transition. Below, we assume trace ω is non-
empty, since the empty trace is trivially race free.

Lemma 1. If σ →b σ′ then α(σ)⇒b α(σ′).

Proof is by case analysis on σ →b σ′.

Theorem 1. If a trace ω is race free under FASTTRACK, then
ω is race free under SLIMSTATE.

Proof: We have that σ0 →ω σ for some σ. By Lemma 1
and induction on ω, α(σ0)⇒ω α(σ). Moreover, τ0 V α(σ0).
This transition can be merged into the first step of α(σ0)⇒ω

α(σ), yielding τ0 ⇒ω α(σ). By the definition of α, α(σ) has
no latent races, and thus ω is race free under SLIMSTATE.

We now show the converse also holds. Each SLIMSTATE
transition corresponds to a FASTTRACK transition provided
that the SLIMSTATE states have no latent races.

Lemma 2. If τ ⇒b τ ′, and τ and τ ′ have no latent races,
then γ(τ)→b γ(τ ′).

Proof is by case analysis on τ ⇒b τ ′.

Theorem 2. If a trace ω is race free under SLIMSTATE, then
ω is race free under FASTTRACK.

Proof: We have that τ0 ⇒ω τ for some τ with no latent
races. Hence every intermediate state in this sequence has no
latent race, and thus σ0 = γ(τ0)→ω γ(τ) by Lemma 2. Thus
ω is race free under FASTTRACK.

Since the SLIMSTATE relation ⇒ is non-deterministic, de-
termining that a trace ω = b1 . . . bj is racy under SLIMSTATE
in theory involves a search to show that there are no possible
states τ1, . . . , τj such that τ0 ⇒b1 τ1 ⇒b2 . . . ⇒bj τj where
τj has no latent races. However, this search is not necessary;
the following theorem shows that any reachable state with a
latent race is evidence of a racy trace.

Theorem 3. Suppose τ0 ⇒ω τ where τ has a latent race.
Then ω is not race free under SLIMSTATE.

Proof: In the analysis sequence τ0 ⇒ω τ , consider the
first transition into a state τ2 with a latent race, so that τ0 ⇒ω1

τ1 ⇒b τ2 ⇒ω2 τ , where ω = ω1.b.ω2. By Lemma 2, σ0 =
γ(τ0)→ω1 γ(τ1). By Lemma 3, there does not exist a σ′ such
that γ(τ)→b σ′. Hence ω is not race free under FASTTRACK,
and by Theorem 2, ω is not race free under SLIMSTATE.

Lemma 3. Suppose τ ⇒b τ ′ where τ ′ has a latent race but
τ does not. Then there is no σ′ such that γ(τ)→b σ′.

Proof is by case analysis on the type of latent race in τ ′.

V. SLIMSTATE IMPLEMENTATION

We have implemented SLIMSTATE for Java and describe
the most salient aspects of this implementation below.

A. Representation of Footprints and Partitions

The idealized SLIMSTATE algorithm of the previous sec-
tion manipulates arbitrary partitions and footprints. An im-

5

plementation could support that full generality by, for exam-
ple, encoding those structures with bit sets, but a prototype
demonstrated that this is prohibitively expensive. Instead, the
SLIMSTATE implementation restricts the general algorithm to
footprints and partitions that have efficient representations and
that reflect common array usage patterns.

Footprints. SLIMSTATE represents footprints as strided ranges
of the form 〈b :e :k〉, with the following meaning:

〈b :e :k〉 ≡ {b+ ik | b ≤ b+ ik ≤ e}

Thus, 〈0 : 3 : 1〉 encodes {0, 1, 2, 3}, 〈1 : 99 : 2〉 encodes
{1, 3, . . . , 99}, and EMPTY = 〈1 : 0 : 1〉 encodes the empty
set. For all non-empty strided ranges 〈b :e :k〉, we require that
0 ≤ b ≤ e, k ≥ 1, and k divides e − b. Strided ranges can
represent many footprints observed in practice. The following
algebraic rules describe how to extend a strided range with
another index (which occurs in the [SS ACCESS] rule).

〈b :e :k〉 ∪ {i} = 〈b :e :k〉 if i ∈ 〈b :e :k〉
EMPTY ∪ {i} = 〈i : i :1〉
〈b :b :1〉 ∪ {b+ k} = 〈b :b+ k :k〉
〈b :b :1〉 ∪ {b− k} = 〈b− k :b :k〉
〈b :e :k〉 ∪ {e+ k} = 〈b :e+ k :k〉
〈b :e :k〉 ∪ {b− k} = 〈b− k :e :k〉

If a strided range footprint cannot be extended with a new
index, SLIMSTATE commits the current footprint, and then
adds the index to the new empty footprint.

Partitions. The SLIMSTATE implementation supports the fol-
lowing partition modes, where n denotes the length of the
corresponding program array, and d and s divide n:

COARSE ≡ {{0, . . . , n−1}}
FINE ≡ {{0}, . . . , {n−1}}

BLOCK(d) ≡ {{0, . . . , d−1}, {d, . . . , 2d−1}, . . . ,
{n−d, . . . , n−1}}

STRIDE(s) ≡ {{0, s, 2s, . . . , n−s},
{1, s+1, 2s+1, . . . , n−s+1}, . . . ,
{s−1, 2s−1, 3s−1, . . . , n−1}}

SPLIT(i) ≡ {{0, . . . , i−1}, {i, . . . , n−1}}
PREFIX(i) ≡ {{0}, {1}, . . . {i−1}, {i, i+1, . . . , n−1}}

Below are several examples of how these modes divide the
Index space for an 8 element array into disjoint parts (labeled
A,B, . . .) that each correspond to a single entry in the com-
pressed array shadow T .

A A ACoarse AA A A A

A A ABlock(4) BA B B B

A B CStride(4) DD A B C

A A ASplit(5) BA A B B

A B CPrefix(3) DD D D D

A
A B
A B C D

A B
A B C D

 P Index Space T

Partition BLOCK(d) applies when SFRs accessing the array
always access one or more complete blocks of d elements.
Partition STRIDE(s) applies when SFRs follow a strided access
pattern with steps of size s. The COARSE and FINE partitions
described previously can be represented either as blocks or

TABLE I. PARTITION REFINEMENT RULES, WHERE f 6= EMPTY.

P f = 〈b :e :k〉 refine(P, f)
COARSE f = 〈0:n−1:1〉 COARSE
COARSE f = 〈0:e :1〉 SPLIT(e+1)
COARSE f = 〈b :n−1:1〉 SPLIT(b)
COARSE d′ = gcd(n, b, e+1), 1<d′, k=1 BLOCK(d′)
COARSE b<k, n−1<e+k, 1<k, k|n STRIDE(k)
COARSE e<n/4 PREFIX(e+1)
BLOCK(d) d′ = gcd(d, b, e+1), 1<d′, k=1 BLOCK(d′)
SPLIT(i) f = 〈0: i−1:1〉 SPLIT(i)
SPLIT(i) f = 〈i :n−1:1〉 SPLIT(i)
SPLIT(i) f = 〈0:n−1:1〉 SPLIT(i)
SPLIT(i) d′ = gcd(n, i, b, e+1), 1<d′, k=1 BLOCK(d′)
SPLIT(i) d = max(i, e), d<n/4 PREFIX(d+1)

STRIDE(s)

(
s′ = lcm(k, s), s′|n, 1<s′

b<k, n−1<e+k

)
STRIDE(s′)

PREFIX(i) f = 〈i :n−1:1〉 PREFIX(i)
PREFIX(i) e<i PREFIX(i)
PREFIX(i) 2e<n−1 PREFIX(2e)
Any Any FINE

strides:
COARSE ≡ BLOCK(n) ≡ STRIDE(1) ≡ {{0, . . . , n−1}}

FINE ≡ BLOCK(1) ≡ STRIDE(n) ≡ {{0}, . . . , {n−1}}

Partition SPLIT(i) applies when elements 0, . . . , i − 1 are
accessed together, and similarly for i, . . . , n − 1. Partition
PREFIX(i) maintains separate shadow locations for the first
i elements. This is particularly useful when a program creates
a large buffer but only ever touches the first few elements.

Each partition mode provides an efficient mapping from an
array index i ∈ Index to a corresponding index in the shadow
array T . Eg, for BLOCK(d), this mapping is simply (i div d).

Table I describes how a partition P is refined to a new par-
tition refine(P, f) that is sufficiently precise for the footprint
f . (Recall P is sufficiently precise for f if f is exactly the
union of some parts p1, . . . , pj in P .) Note that refine(P, f) is
a refinement of P : each part in P becomes the union of some
parts in refine(P, f). The given rules are applied in the order
listed, and they attempt to minimize the number of parts in
the resulting partition. In particular, if P is already sufficiently
precise for f , then P = refine(P, f).

COARSE Rules. The first three rules either preserve the
COARSE partition or convert it to SPLIT(d), if possible. The
fourth rule converts the partition to BLOCK(d′), if f exactly
covers one or more blocks in BLOCK(d′). (We require 1 < d′

to avoid converting to FINE = BLOCK(1) before exploring
other rules.) The fifth rule converts COARSE to STRIDE(k)
when given an appropriate footprint. The last rule converts to
COARSE to prefix mode if the largest index in the footprint
is in the first quartile of the array, a threshold heuristically
chosen to balance various implementation tradeoffs.

BLOCK(d) Rules. We refine this partition to have a smaller
block size d′ if we can find a d′ that evenly divides both the
original size d and the range end points of the footprint f . We
choose the largest block size satisfying this requirement.

SPLIT(i) Rules. We remain in SPLIT(i) if the footprint matches
either or both parts. We may transition to BLOCK(d′) if we
can find a d′ that evenly divides the array size, the index i,
and the endpoints of the footprint f . We may also transition

6

to prefix mode if the original split and the endpoints of f are
all within the first quartile of the array.

STRIDE(s) Rules. We refine STRIDE(s) to STRIDE(s′) if s′ a
multiple of step size s and f is an appropriate strided range.

PREFIX(i) Rules. A prefix partition remains the same if the
footprint f is {i, . . . , n− 1}, or if f only contains indices in
the finely tracked prefix. Otherwise, we (at least) double the
size of the finely tracked prefix to appropriately amortize the
cost of initializing a new, larger shadow array.

If none of the above rules apply, the partition becomes FINE.

B. Java Implementation Details

We built our prototype in the ROADRUNNER analysis
framework [21]. ROADRUNNER takes as input a compiled Java
target program and inserts instrumentation code into the target
to generate an event stream of memory and synchronization
operations. Back-end checking tools process these events as
the target executes. Standard Java library classes are not
instrumented by ROADRUNNER, and so they are not checked
for races and are assumed to not perform synchronization
relevant to the target program. ROADRUNNER contains special
handling for Object and Thread methods providing basic
synchronization operations, such as wait() and notify(),
as well as volatile variables. To facilitate comparisons,
SLIMSTATE reuses the FASTTRACK reference implementation
wherever possible. Indeed, the only substantive difference is
in the treatment of arrays. Objects are tracked exactly as in
FASTTRACK. Both tools prevent races on their shadow state
via non-blocking optimistic concurrency control mechanisms.

SLIMSTATE correctly handles concurrent reads by main-
taining separate 32-bit read and write epochs, R and W , in
each shadow location and imposing ordering requirements on
pairs of accesses only when at least one is a write. When
reads for a location are not totally ordered, the single epoch
R is replaced with a vector clock, as in FASTTRACK [7].

Array Shadows. For each array, SLIMSTATE creates an
ArrayShadow object encapsulating the corresponding partition
P and shadow array T , where T is stored as an array
of adaptive epoch pairs (R,W) described in the previous
paragraph. When P is not sufficiently precise for a footprint
being committed, SLIMSTATE refines that P , as described
in the previous section, and similarly refines the shadow
array T as necessary. ArrayShadow objects support concurrent
refinements (which typically leave P unchanged) and commits
via optimistic concurrency control. Each ArrayShadow also
maintains separate read and write footprints as strided ranges
for each thread that has touched its corresponding array.

Commit Buffers. For each thread t, SLIMSTATE maintains a
commit buffer recording all ArrayShadows with non-empty
read or write footprints for t. SLIMSTATE flushes that buffer
and commits the corresponding footprints whenever t performs
a synchronization operation.

As mentioned earlier, if thread t performs an array read (or
write) that cannot be merged into the ArrayShadow’s read (or
write) footprint, the footprint is committed immediately, and
the access is recorded in the new empty footprint.

We limit the size of commit buffers to 2048 entries and
flush them if they become full. This may lead to sub-optimal
commits for some arrays, but our experience indicates that
this does not occur often and that larger buffers degrade
performance by preventing the shadow state for an array from
being garbage collected even if the array itself has been.

FINE and PREFIX Modes. Once the partition for an array
is in FINE or PREFIX(i) mode, SLIMSTATE stops building
footprints for that array and instead commits accesses to the
shadow array as they occur.

Small Arrays. The overhead of managing footprints and parti-
tions for small arrays can be higher than tracking those arrays
with FINE partitions from the start. SLIMSTATE treats all
arrays below a threshold size of 16 as having a FINE partition.

VI. EVALUATION

We evaluate the effectiveness of SLIMSTATE on the bench-
marks listed in Figure 4. Each is labeled with its source: (1)
the Java Grande Benchmarks [22]; (2) the DaCapo Bench-
marks [23]; (3) jbb and mtrt [24]; (4) colt [25]; and (5)
raja [26]. The Java Grande benchmarks were configured with
4 worker threads and their largest data sets. ROADRUNNER
contains special provisions to compensate for bugs in the
barrier implementations in some of those programs [27]. We
separated the DaCapo programs from the DaCapo harness and
excluded the tradebeans benchmark to avoid limitations of
ROADRUNNER’s instrumentation loading support. The code in
several specific class files in other programs was excluded from
analysis for similar reasons. These programs were configured
to use the default benchmark parameters. The jbb benchmark
was modified to terminate after a fixed number of transactions
rather than after a fixed time.

All experiments were performed on an Apple Mac Pro
with a 2.7GHz 12-core Pentium Xeon processor with hyper-
threading and 64GB of memory. We used the Oracle HotSpot
Server VM 1.7 with the default parallel garbage collector.
Both FASTTRACK and SLIMSTATE are precise and report no
spurious warnings or missed races. We manually verified that
both tools report the same races modulo variations due to
observed interleavings.

Array Shadow Compression. Figure 4 provides an overview
of the shadow compression achieved by SLIMSTATE’s various
partition modes. These benchmarks are ordered according to
how well SLIMSTATE compresses array shadow state. The left
side shows the aggregate array sizes for all arrays matching
each partition mode, relative to the aggregate size of all
allocated arrays. With no compression, the shadow state and
arrays will be equal in size. An array may go through multiple
refinements over its lifetime, and this figure reflects only
its final partition mode. The right half of Figure 4 shows
the compressed size of the shadow arrays for each partition
mode. For programs like sor and sparse, the number of
array shadows is identical to the number of array elements,
since FINE partitions provide no compression. For crypt and
raytracer, on the other hand, the number of shadow locations
is well below 1% of the array sizes.

Table II provides a numeric view of this data. The second
column shows, for each benchmark, the shadow fraction,

7

Fig. 4. Left: Fraction of shadow array locations in each partitioning mode at the end of their life times. Right: How many shadow array locations are needed
for each partition mode as a fraction of the original number of locations.

TABLE II. ARRAY SHADOW FRACTIONS.

SLIM Alternative Bit Set Representations
Program STATE Footprint Partition Both

crypt 0.00000057 0.00000023 0.00000021 0.00000017
raytracer 0.000057 0.000057 0.000034 0.000034
montecarlo 0.0018 0.0018 0.0017 0.0017
lusearch 0.0019 0.0019 0.00064 0.00061
jbb 0.11 0.11 0.092 0.089
batik 0.19 0.11 0.11 0.028
colt 0.20 0.11 0.012 0.0099
xalan 0.27 0.25 0.043 0.041
pmd 0.35 0.31 0.12 0.042
tomcat 0.60 0.54 0.094 0.045
moldyn 0.63 0.63 0.63 0.0021
series 0.63 0.63 0.000014 0.000014
h2 0.64 0.61 0.26 0.21
jython 0.72 0.71 0.31 0.28
sunflow 0.76 0.68 0.42 0.35
mtrt 0.80 0.80 0.27 0.25
eclipse 0.86 0.62 – 0.054
avrora 0.90 0.89 0.38 0.37
luindex 0.91 0.88 0.68 0.45
fop 0.96 0.92 0.21 0.047
lufact 1.00 1.00 0.49 0.41
sor 1.00 1.00 1.00 0.004
sparse 1.00 0.53 – 0.0000041
raja 1.00 1.00 0.54 0.54

Average 0.56 0.51 0.26 0.13

which is the number of array shadow locations as a fraction
of the number of array elements. SLIMSTATE achieves a
shadow fraction of 0.56, in comparison to 1 for FASTTRACK.
SLIMSTATE also performs 30% fewer array race checks than
FASTTRACK for these programs.

Bit Set Representations. Columns 3–5 investigate how the
shadow fraction is influenced by SLIMSTATE’s representations
for footprints and partitions. Column 3 shows that using
bit sets to represent arbitrary footprints reduces the average
shadow fraction to 0.51; Column 4 shows that using bit sets to
represent partitions reduces it to 0.26 (our prototype ran out of
memory on the entries marked ‘−’.); and Column 5 shows that
using bit sets to represent both footprints and partitions reduces
it to 0.13. These bit set implementations are prohibitively
expensive for many programs, but their shadow fractions
suggest that more expressive representations, particularly for
partitions, may further improve SLIMSTATE’s space savings.

Reduced Race Detection Overhead. Table III shows the total
number of array elements allocated in each program, as well
as that count as a percentage of all locations — array elements
plus object fields — tracked during race detection. The table
also shows the running time and minimum heap size for
each benchmark under three configurations: Base (no race
detection), FASTTRACK (FT), and SLIMSTATE (SS).

Since SLIMSTATE is designed to improve the performance
of race detection on arrays, we focus our attention on the
15 array-intensive programs for which at least half of the
checked memory locations are array elements. For those pro-
grams, the running time under SLIMSTATE when memory is

8

TABLE III. ANALYSIS OVERHEAD FOR BENCHMARK PROGRAMS, SORTED BY THE PERCENT OF MEMORY LOCATIONS (ARRAY ELEMENTS + OBJECT
FIELDS) THAT ARE ARRAY ELEMENTS. ARRAY-INTENSIVE PROGRAMS HAVE A PERCENTAGE OF ARRAY ELEMENTS OF AT LEAST 50%.

Array Elems Minimum Heap Space Time with No Space Limits
Program Count

(x106)
% of
Total

Shadow
Fraction

Base
(MB)

FT
Base

SS
Base

(
SS
FT

)
Base
(sec)

FT
Base

SS
Base

(
SS
FT

)
Array-Intesive Programs

crypt 150.0 100 0.00000057 193.6 27.67 1.00 (0.04) 0.62 87.71 15.06 (0.17)
lufact 4.0 100 1.00 32.1 7.00 7.00 (1.00) 0.81 40.55 36.70 (0.91)
series 2.0 100 0.63 22.2 3.86 3.04 (0.79) 218.51 1.03 1.03 (1.00)
sor 4.0 100 1.0 33.5 4.76 4.76 (1.00) 0.47 19.13 20.53 (1.07)
sparse 16.0 100 1.00 100.0 5.53 3.17 (0.57) 1.49 40.95 39.27 (0.96)
montecarlo 180.0 98 0.0018 619.1 3.55 1.09 (0.31) 3.90 5.92 3.09 (0.52)
lusearch 2,445.8 98 0.0019 1.5 32.25 21.50 (0.67) 2.26 13.09 7.14 (0.55)
xalan 102.1 90 0.27 11.3 10.17 8.50 (0.84) 3.00 6.06 6.56 (1.08)
eclipse 771.1 87 0.86 87.5 8.29 9.14 (1.10) 29.83 9.83 10.72 (1.09)
luindex 2.6 86 0.91 1.3 63.00 61.00 (0.97) 1.24 10.56 11.18 (1.06)
batik 6.3 80 0.19 22.7 5.09 4.14 (0.81) 6.44 2.15 2.23 (1.04)
tomcat 21.3 76 0.60 15.0 11.20 12.10 (1.08) 14.88 2.08 2.08 (1.00)
colt 0.4 76 0.20 0.6 73.05 48.03 (0.66) 15.98 1.10 1.13 (1.02)
jbb 35.0 72 0.11 96.0 3.97 3.09 (0.78) 1.92 11.63 11.48 (0.99)
avrora 0.7 55 0.90 1.3 23.00 21.43 (0.93) 4.28 3.69 3.71 (1.01)
Geo Mean (Array-Intensive) 11.1 7.1 (0.65) 7.9 6.5 (0.83)

Object-Intesive Programs
h2 72.8 37 0.64 272.1 4.46 4.79 (1.07) 12.44 12.58 14.07 (1.12)
fop 2.6 32 0.96 28.9 6.25 6.20 (0.99) 2.59 4.72 4.91 (1.04)
moldyn 0.2 30 0.63 1.4 22.78 21.44 (0.94) 3.68 15.94 18.54 (1.16)
mtrt 0.8 30 0.80 16.0 7.61 8.11 (1.07) 0.44 8.25 9.00 (1.09)
pmd 6.3 30 0.35 45.3 5.31 5.44 (1.02) 3.75 4.79 4.55 (0.95)
jython 27.3 20 0.72 25.6 16.11 11.11 (0.69) 12.02 6.62 7.06 (1.07)
sunflow 4.7 1 0.76 15.0 8.07 7.80 (0.97) 1.65 16.39 17.97 (1.10)
raytracer 1.0 0 0.000057 1.4 19.00 10.27 (0.54) 3.06 18.67 19.12 (1.02)
raja 0.0 0 1.00 1.3 13.60 13.60 (1.00) 0.25 9.76 10.04 (1.03)
Geo Mean (Object-Intensive) 9.8 8.9 (0.90) 9.7 10.0 (1.06)

Overall Geo Mean 10.6 7.7 (0.73) 8.5 7.8 (0.91)

unconstrained is 17%-109% the running time of FASTTRACK,
with a geometric mean of 83%. When memory is constrained,
SLIMSTATE is able to successfully check those programs in
heap spaces that are 4%-108% of the minimum heap required
to check them with FASTTRACK, with a geometric mean of
65%. The most significant improvements are achieved for
array-intensive programs with patterns matching our modes.

While our focus is primarily array-intensive programs, we
also show the object-intensive programs in Table III. These
programs, which use fewer arrays and typically exhibit large
array shadow fractions, offer less opportunity for compression.
Two notable exceptions are raytracer and jython, which
use a small number of arrays heavily and in a compressible
way. When all 24 programs are considered, the running time
under SLIMSTATE when memory is unconstrained is reduced
to 91% of the running time under FASTTRACK. When memory
is constrained, SLIMSTATE is able to check those programs in
heap spaces that are on average only 73% of the minimum
heap size required to check them with FASTTRACK.

These timing measurements are the average of 20 runs
when the JVM’s maximum heap size is set to the machine’s
physical memory size of 64GB, which is roughly an order of
magnitude larger than the maximum space used by any bench-
mark under any checker. Minimum heap space is measured by
iteratively reducing the JVM’s maximum permitted heap size

until execution fails to terminate within five times the running
time of FASTTRACK under no memory constraints. (Increasing
that time limit led to no discernible changes in the results.)

Some programs where all arrays ultimately have FINE
partitions, such as sparse, still exhibit space and time savings
because show arrays are still compressed for parts of their
lifetimes, including periods when memory pressure is greatest.
SLIMSTATE space savings drop from 35% to about 20% when
we do not by default use FINE partitions for arrays with fewer
than 16 elements, due to the additional bookkeeping.

Time vs. Space Graphs. Since Java is a garbage collected
language, the VM can reduce overall running time at the cost
of increased space usage for the heap, and vice-versa. Figure 5
provides a more complete view of this time/space tradeoff
for the checkers on representative array-intensive programs.
(Graphs for all programs appear in our extended report [28].)

In these graphs, JVM heap size is normalized to Base
Minimum Heap Size from Table III, and run time is normal-
ized to Base Time with No Space Limits. We also include
FASTTRACKOBJ, a version of FASTTRACK that only checks
for races on objects, as a proxy for “ideal” behavior if all array
checking time and space overhead were eliminated. The graphs
for crypt, and lusearch show sizable improvements in both
time and space. Other programs, such as sparse show modest

9

●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

crypt lusearch

luindex sparse

0x

25x

50x

75x

100x

0x

20x

40x

60x

0x
5x

10x
15x
20x
25x

0x

10x

20x

30x

40x

0x 10x 20x 30x 0x 20x 40x 60x 80x

0x 30x 60x 90x 2x 4x 6x
Heap Size Normalized to Base Min. Heap Size

R
un

 T
im

e
N

or
m

al
ize

d
to

 B
as

e
R

un
 T

im
e

●Base FastTrackObj FastTrack SlimTrack

●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

crypt lusearch

luindex sparse

0x

25x

50x

75x

100x

0x

20x

40x

60x

0x
5x

10x
15x
20x
25x

0x

10x

20x

30x

40x

0x 10x 20x 30x 0x 20x 40x 60x 80x

0x 30x 60x 90x 2x 4x 6x
Heap Size Normalized to Base Min. Heap Size

R
un

 T
im

e
N

or
m

al
ize

d
to

 B
as

e
R

un
 T

im
e

●Base FastTrackObj FastTrack SlimState

Fig. 5. Run times for different heap sizes.

gains in speed but a sizable drop in the minimum heap size.
For luindex, limited opportunities for compression combined
with additional bookkeeping lead SLIMSTATE to perform no
better (or slightly worse) than FASTTRACK. That pattern is
repeated in several other programs. The high variability under
different workloads indicates that SLIMSTATE may be most
effective when used in conjunction with adaptive feedback to
target compression where it will be most effective.

VII. RELATED WORK

A common approach for shadow state compression in
earlier tools is using a single shadow state for each array
and object [10], [29], [11], [6], [7], [30]. Octet uses a similar
coarse-grained mechanism to enable efficient tracking of cross-
thread dependences inside a JVM [30]. To determine if a
reported race is real, one approach is to re-run the program
with a more fine grained shadow state for the offending array,
as in MultiRace [6]. Another is to switch to a fine-grained
representation on-the-fly and hope that a second race manifests
later if the first had been a real race, as in RaceTrack [11].
Other recent work [12] uses a single shadow state for contigu-
ous memory locations if those locations are accessed within
the same critical sections. However, only the first two critical
sections accessing those locations are considered, and the
shadow state is not refined if later accesses are not correlated,
resulting in potential false alarms.

In contrast, SLIMSTATE’s adaptive compression technique
precisely tracks the happens-before relation with no false
alarms or missed races.

Several race checkers defer the processing of accesses until
later in the execution. RecPlay [31], for example, records all
memory locations accessed within each SFR and then uses this
information to verify that concurrent regions access disjoint
memory during replay. DRD [32] and ThreadSanitizer [33]
similarly buffer accesses but do not infer patterns or compress
the shadow state. Similar buffering is also common in trans-
actional memory systems [34].

Many other dynamic analyses improve space and time per-
formance by sacrificing precision guarantees in various ways.
For example, Eraser’s lockset algorithm reasons about lock-
based synchronization, augmented with specialized handling
of thread-local and read-shared data [35]. Other approaches
extend that algorithm to be less prone to false alarms [29], [11],
[6], [36], [37]. Sampling techniques have also been explored,
with some loss of precision [38], [39], [40]. RADISH [41]
checks race-freedom of most accesses in hardware at access
time, but defers some race checks into a queue processed
by another core asynchronously. The hardware waits for the
queue to empty at synchronization points, in the same way
that SLIMSTATE empties its access buffers at those points.

It is also possible to design efficient, specialized, race
detectors for specific programming models such as structured
parallelism in Cilk or X10 [17], [42], partitioned global address
space programs [43], or GPUs [44].

A number of static analyses reason about access patterns in
the context of race detection. DPJ, for example, uses source-
level type annotations to enforce access patterns guaranteed
to be race free [45]. REDCARD uses a global analysis to
infer whether simple access patterns for arrays and objects
are followed within all synchronization-free code blocks on all
executions [46]. A dynamic analysis can partition shadow state
based on that information, but REDCARD uses a very expen-
sive and somewhat brittle whole program analysis. SLIMSTATE
instead infers access patterns that are only required to hold for
the observed program trace, enabling compression based on
patterns that static analysis fails to identify or that are only
violated on rare or exceptional control flow paths. REDCARD
misses such opportunities. On the benchmarks in common with
that work, REDCARD reduces the number of shadow locations
allocated for both arrays and objects by 27%. SLIMSTATE
reduces that number by 80%, despite not addressing objects.

VIII. SUMMARY

Dynamic race detectors incur significant space overhead for
recording analysis shadow state, particularly for arrays. Prior
work compressed shadow state by compromising precision.
We show that, by recording footprints and adaptively refin-
ing the compression strategy, SLIMSTATE achieves significant
compression of array shadow state with no loss of precision.
Dynamic analyses for richer concurrency properties, such as
atomicity or determinism, often must first reason about race
conditions in the observed trace, and the contributions of this
work also serves to potentially improve those analyses as well.

SLIMSTATE builds footprints dynamically, which involves
some run time overhead. A promising direction for future work
is to compute these footprints statically. Adapting SLIMSTATE
to access patterns and shadow compression for objects is
another avenue of future work, although it is likely that other
techniques will be required to achieve good performance, given
the size of most objects.

ACKNOWLEDGMENT

This work was supported, in part, by NSF Grants 1337278,
1421051, 1421016, and 1439042.

10

REFERENCES

[1] S. V. Adve and H.-J. Boehm, “Memory models: a case for rethinking
parallel languages and hardware,” Commun. ACM, vol. 53, no. 8, pp.
90–101, 2010.

[2] D. R. Engler and K. Ashcraft, “RacerX: Effective, static detection of
race conditions and deadlocks,” in SOSP, 2003.

[3] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection for
Java,” in PLDI, 2006, pp. 308–319.

[4] M. Abadi, C. Flanagan, and S. N. Freund, “Types for safe locking:
Static race detection for Java,” TOPLAS, vol. 28, no. 2, pp. 207–255,
2006.

[5] F. Mattern, “Virtual time and global states of distributed systems,” in
Workshop on Parallel and Distributed Algorithms, 1988.

[6] E. Pozniansky and A. Schuster, “MultiRace: Efficient on-the-fly data
race detection in multithreaded C++ programs,” Concurrency and
Computation: Practice and Experience, vol. 19, no. 3, pp. 327–340,
2007.

[7] C. Flanagan and S. N. Freund, “FastTrack: Efficient and precise
dynamic race detection,” in PLDI, 2009, pp. 121–133.

[8] M. Christiaens and K. D. Bosschere, “TRaDe: Data Race Detection for
Java,” in International Conference on Computational Science, 2001, pp.
761–770.

[9] T. Elmas, S. Qadeer, and S. Tasiran, “Goldilocks: A race and
transaction-aware Java runtime,” in PLDI, 2007, pp. 245–255.

[10] C. von Praun and T. Gross, “Object race detection,” in OOPSLA, 2001,
pp. 70–82.

[11] Y. Yu, T. Rodeheffer, and W. Chen, “RaceTrack: Efficient detection of
data race conditions via adaptive tracking,” in SOSP, 2005, pp. 221–
234.

[12] Y. W. Song and Y. Lee, “Efficient data race detection for C/C++
programs using dynamic granularity,” in 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, 2014, pp. 679–688.

[13] C. Flanagan and S. N. Freund, “Atomizer: A dynamic atomicity checker
for multithreaded programs,” in POPL, 2004, pp. 256–267.

[14] L. Wang and S. D. Stoller, “Runtime analysis of atomicity for mul-
tithreaded programs,” IEEE Trans. Software Eng., vol. 32, no. 2, pp.
93–110, 2006.

[15] C. Flanagan, S. N. Freund, and J. Yi, “Velodrome: a sound and complete
dynamic atomicity checker for multithreaded programs,” in PLDI, 2008,
pp. 293–303.

[16] S. Biswas, J. Huang, A. Sengupta, and M. D. Bond, “DoubleChecker:
efficient sound and precise atomicity checking,” in PLDI, 2014.

[17] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark,
“Detecting data races in Cilk programs that use locks,” in Proceedings
of the 10th Symposium on Parallel Algorithms and Architectures, 1998,
pp. 298–309.

[18] C. Sadowski, S. N. Freund, and C. Flanagan, “SingleTrack: A dynamic
determinism checker for multithreaded programs,” in ESOP, 2009, pp.
394–409.

[19] J. Yi, C. Sadowski, and C. Flanagan, “Cooperative reasoning for
preemptive execution,” in PPoPP, 2011.

[20] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[21] C. Flanagan and S. N. Freund, “The RoadRunner dynamic analysis
framework for concurrent programs,” in PASTE, 2010, pp. 1–8.

[22] Java Grande Forum, “Java Grande Forum benchmark suite,” Available
from http://www.javagrande.org/, 2013.

[23] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. L. Hosking, M. Jump, H. B. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von Dincklage,

and B. Wiedermann, “The DaCapo benchmarks: Java benchmarking
development and analysis,” in OOPSLA, 2006, pp. 169–190.

[24] Standard Performance Evaluation Corporation, “SPEC benchmarks,”
http://www.spec.org/, 2003.

[25] CERN, “Colt 1.2.0,” http://dsd.lbl.gov/~hoschek/colt/, 2004.
[26] E. Fleury and G. Sutre, “Raja, version 0.4.0-pre4,” Available at

http://raja.sourceforge.net/, 2007.

[27] C. Flanagan and S. N. Freund, “Adversarial memory for detecting
destructive races,” in PLDI, 2010, pp. 244–254.

[28] J. Wilcox, P. Finch, C. Flanagan, and S. N. Freund, “SlimState:
Array shadow state compression for precise dynamic race de-
tection (extended report),” http://www.cs.williams.edu/∼freund/papers/
slimstate-extended.pdf, 2015.

[29] R. O’Callahan and J.-D. Choi, “Hybrid dynamic data race detection,”
in PPoPP, 2003, pp. 167–178.

[30] M. D. Bond, M. Kulkarni, M. Cao, M. Zhang, M. F. Salmi, S. Biswas,
A. Sengupta, and J. Huang, “OCTET: capturing and controlling cross-
thread dependences efficiently,” in OOPSLA, 2013, pp. 693–712.

[31] M. Ronsse and K. D. Bosschere, “RecPlay: A fully integrated practical
record/replay system,” TOCS, vol. 17, no. 2, pp. 133–152, 1999.

[32] “DRD: a thread error detector,” http://valgrind.org/docs/manual/
drd-manual.html, 2014.

[33] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: Data race detec-
tion in practice,” in Proceedings of the Workshop on Binary Instrumen-
tation and Applications, 2009, pp. 62–71.

[34] N. Shavit and D. Touitou, “Software transactional memory,” in ACM
Symposium on Principles of Distributed Computing, 1995, pp. 204–213.

[35] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson,
“Eraser: A dynamic data race detector for multi-threaded programs,”
TOCS, vol. 15, no. 4, pp. 391–411, 1997.

[36] K. Serebryany, A. Potapenko, T. Iskhodzhanov, and D. Vyukov, “Dy-
namic race detection with LLVM compiler - compile-time instrumen-
tation for ThreadSanitizer,” in RV, 2011, pp. 110–114.

[37] X. Xie and J. Xue, “Acculock: Accurate and efficient detection of data
races,” in CGO, 2011, pp. 201–212.

[38] M. D. Bond, K. E. Coons, and K. S. McKinley, “PACER: proportional
detection of data races,” in PLDI, 2010, pp. 255–268.

[39] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk, “Effective
data-race detection for the kernel,” in OSDI, 2010, pp. 151–162.

[40] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J. Boehm,
“IFRit: interference-free regions for dynamic data-race detection,” in
OOPSLA, 2012, pp. 467–484.

[41] J. Devietti, B. P. Wood, K. Strauss, L. Ceze, D. Grossman, and
S. Qadeer, “Radish: Always-on sound and complete race detection in
software and hardware,” in ISCA, 2012, pp. 201–212.

[42] R. Raman, J. Zhao, V. Sarkar, M. T. Vechev, and E. Yahav, “Efficient
data race detection for async-finish parallelism,” in RV, 2010, pp. 368–
383.

[43] C.-S. Park, K. Sen, and C. Iancu, “Scalable data race detection for
partitioned global address space programs,” in PPoPP, 2013, pp. 305–
306.

[44] M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal, “GRace: a low-overhead
mechanism for detecting data races in GPU programs,” in PPoPP, 2011,
pp. 135–146.

[45] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian,
“A type and effect system for deterministic parallel Java,” in OOPSLA,
2009, pp. 97–116.

[46] C. Flanagan and S. N. Freund, “RedCard: Redundant check elimination
for dynamic race detectors,” in ECOOP, 2013, pp. 255–280.

11

