Programming and Proving

with Distributed Protocols
Disel: Distributed Separation Logic

an

CH{P) e {Q)

. ad |

:%;%: http://distributedcomponents.net

llya Sergey James R. Wilcox Zach Tatlock

iPLSE W AksALaNschoo

Distributed Systems

f

Lk Byl ' -))

SIS (gl oW 3 = .
o, JP L i U u....ykl.\ino%s&.\.\“. -

Ha s

W / " A '
arr.- Pdiibog &b b b e .ull.ﬁ.\l?;.l.U/
S " e \I.a

) 7,

\ﬁ.-\.l.,.\»(u\ A RS A - o

N Gindy ¥ < 4 .N.. Y B pan A I.

P i e N L A N L -

O Tl ol M

Distributed Infrastructure

Distributed Applications

Veritied Distributed Systems

holds(®, S, ~~;) —
holds(transfer(®), T(S), ~2)

|
-

|
S

-~
>
>
-
-

~

Simulator
- evaluator

Emacs Ul

Refiners

Message
system

Veritied Distributed Infrastructure

holds(®, S, ~~;) —
holds(transfer(®), T(S), ~2)

Veritied Distributed Applications

Challenging to verity apps in terms of infra.
starting from scratch is unacceptable

Indicates deeper problems with composition
one nodes client is another’s server!

Challenges

Client reasoning

Invariants

Separation

H |

Disel: =

Solutions

Protocols

WITHINV rule

FrRAME rule/Hooks

L {P} ¢ {Q}

Outline

Protocols and running example

Logical mechanisms

programming with protocols
invariants
framing and hooks

Implementation and future work

Cloud Compute

21

OO

Cloud Compute

Cloud Compute: Server

while true:
(from, n) <- recv Reg
send Resp(n, factors(n)) to from

Traditional specification:
messages from server have correct factors

Proved by finding an invariant of the system

Cloud Compute: Server

Cloud Compute: Client

Cloud Compute: Client

send Req(21) to server
(_, ans) <- recv Resp
assert ans == {5, /}

Start over with clients in system?

In Disel: use protocol to describe client interface

Protocols

Protocols

lll

ll

A protocol Is an interface among nodes

Enables compositional veritication

llllllllllllllllllllll

Cloud Compute Protocol @ ~®:

Messages:

State:

Transitions:

Sends: precondition and effect
Recelves: eftect

llllllllllllllllllllll

Cloud Compute Protocol | @=_—®;

Messages: Reg(n) | Resp(n,s)
State: outstanding: Set<Msg>

Transitions:

Sends: Req Resp

Recelves: Req Resp

Cloud Compute

Req(21)

OO

Send Reg(n)
Precondition: none

Effect: none

Cloud Compute

Req(21)

Recelve Req(n)

Effect: add (from, n) to out

Cloud Compute

® _O®

Resp({3,7})

Send Resp(n, 1)

Requires: 1 == factors(n)
(n,to) In out
Effect: removes (n,to) from out

Cloud Compute
@ O
Resp({3,7})

Recv Resp(n, L)

Effect: none

llllllllllllllllllllll

Cloud Compute Protocol | @=_—®;

Messages: Reg(n) | Resp(n,s)
State: outstanding: Set<Msg>

Transitions:

Sends: Req Resp

Recelves: Req Resp

Outline

Protocols and running example

Logical mechanisms

programming with protocols
invariants
framing and hooks

Implementation and future work

Cloud Compute: Server

while true:
(from, n) <- recv Reg
send Resp(n, factors(n)) to from

Precondition on send requires correct factors

Cloud Compute: Server

T

t) € 25

< l)\ / /\ v

-

; ﬂj}—{ '}send1m votb h { }

h .

while true:
(from, n) <- recv Reg
send Resp(n, factors(n)) to from

Precondition on send requires correct factors

Cloud Compute: Client

send Req(21) to server
(_, ans) <- recv Resp
assert ans == {5, /}

recv doesn’t ensure correct factors

Cloud Compute: Client

\\

t] € p

ST

y

; #L — {T} recv(;| m {recvd(m) }

"

send Req(21) to server
(_, ans) <- recv Resp
assert ans == {3, /}

recv doesn’t ensure correct factors

Protocol Invariants

{ifmf{P} c1Q} T inductive

) HPALYc{QAD

Protocol where every state satisfies [

Cloud Compute: Client

\\

t] € Qﬁ[\{ J}

aacn, /
é[\)@t —{ T} recv o om {recvd(m) }

send Req(21) to server
(_, ans) <- recv Resp
assert ans == {3, /}

Now recv ensures correct factors

Cloud Compute: More Clients

send Req(21) to server:
send Req(35) to server;
(_, ansi) <- recv Resp
(_, ansz) <- recv Resp
assert ansiuans; == {5, 5, 7/}

Same protocol enables verification

Frame rule

P
/‘ - \ [))

independent protocols

- (PR} ¢ {Q*R}

R stable

iji
i
kY2
iji
i

Frame rule: Hooks

ﬁ[ﬂ/l\ |7 {P } C {Q} R stable

bR

Outline

Protocols and running example

Logical mechanisms

programming with protocols
invariants
framing and hooks

Implementation and future work

Implementation

Shallowly embedded in Coqg
with full power of functional programming

Executable via extraction to OCaml
via trusted shim to implement semantics

Case study: two-phase commit
exercises all features of the logic

Concurrent separation logics
Iris, FCSL, CAF, ...

Adding other effects
e.q. mutable heap, threads, failure...

Composition: A way
to make proofs harder

the next

specifica

‘In 1997, the unfor
rarely specity and reason formally about the
systems they build. [t seems unli
reasoning about the compositio
lons will be a practica

-4

‘unate rea

5vyears.”

ity Is that engineers

ﬁ

Kely that

of open-system
concern within

Challenges

Client reasoning

Invariants

Separation

H |

Disel: =

Solutions

Protocols

WITHINV rule

FrRAME rule/Hooks

L {P} ¢ {Q}

