
Verification of Implementations of
Distributed Systems Under Churn

Ryan Doenges James R. Wilcox
Doug Woos Zachary Tatlock

University of Washington, USA
rdoenges@uw.edu

{jrw12, dwoos, ztatlock}@cs.washington.edu

Karl Palmskog
University of Illinois at Urbana-Champaign, USA

palmskog@illinois.edu

1. Introduction
In order to provide high availability and operate in unreliable envi-
ronments, many critical applications are implemented as distributed
systems. Unfortunately, the need to handle packet drops, machine
crashes, and churn—the spontaneous arrival and departure of nodes
to and from the network—has made these systems difficult to im-
plement correctly in practice. Recent work provides mechanisms to
formally verify implementations that tolerate packet drops and ma-
chine crashes; however, no extant verification framework supports
reasoning about churn. To address this challenge, we introduce sup-
port for reasoning about churn to the Coq-based Verdi framework.

Churn makes it difficult for systems to always uphold desired
safety properties. Instead, systems promise to progress towards full
safety when networks are quiescent, and do their best to fight en-
tropy the rest of the time. We term this type of guarantee punc-
tuated safety. Such properties are challenging to verify because
their proofs involve both invariance arguments over system actions
and well-foundedness arguments over infinite sequences of system
states under fairness hypotheses.

2. Verdi Background
Verdi [2] is a framework for implementing and formally verifying
distributed systems in Coq. In Verdi, a distributed system is defined
as a finite set of nodes that communicate with each other by ex-
changing messages over a network. Nodes react to messages from
the network and input from the outside world by invoking event
handlers. To run systems in real networks, Verdi users extract their
certified event handler code from Coq to OCaml and link it to a
trusted OCaml shim that implements network primitives.

Verdi systems are proved correct with respect to a network se-
mantics that encodes the system’s assumptions about the behavior
(or misbehavior) of the underlying network as a step relation on
the state of the entire system. Safety properties are established by
induction on that step relation.

Verdi introduced verified system transformers (VSTs) to sep-
arate fault-tolerance mechanisms from application logic. A VST
maps a system implementation developed and verified with respect
to a network semantics to a new system implementation that is for-
mally guaranteed to behave analogously to the given system in a
different (and possibly much more complex) network semantics.

The largest Verdi case study to date is the verification of the
key safety properties of the Raft distributed consensus protocol [3].
The Raft proof makes heavy use of ghost transformers, VSTs from
a network semantics to itself that add ghost state only available at
verification time to the system while guaranteeing that behavior of
the system is otherwise identical.

to ∈ N \ F P [from, to] = m :: ms
Σ[to] = σ Hnet (to, from, m, σ) = (σ′, l)

P ′ = P [from, to 7→ ms] ++ l

(N, F, Σ, P) (N, F, Σ[to 7→ σ′], P ′)
DELIVER

h /∈ N Hinit (h) = σ
P ′ = P ++ [(a, New) | a ∈ N \ F, h ∼ a]

(N, F, Σ, P) ({h} ∪N, F, Σ[h 7→ σ], P ′)
START

h ∈ N \ F P ′ = P ++ [(a, Fail) | a ∈ N \ F, h ∼ a]

(N, F, Σ, P) (N, {h} ∪ F, Σ, P ′)
FAIL

Figure 1. Selected rules from the dynamic network semantics
used to verify tree-aggregation protocols. A network is a 4-tuple
(N, F, Σ, P) where N is a set of node addresses, F is a set
of failed nodes, Σ is a partial map from node addresses to a user-
defined node state type, and P is a map from pairs (from, to) of
addresses to a list of pending messages for to originating at from .
If a and b are addresses, a ∼ b holds if the node at a and the node
at b are adjacent in the overlay network. The arrow 7→ denotes an
update of a map. The operator (++) takes a network map P and a
list of pairs (to,m) and returns a new network map P ′ identical to
P but with all messages m appended to the channel from h to to,
where h is understood from context.

3. Semantics of Networks Under Churn
Verdi’s existing network semantics assume a fixed set of node
names throughout the lifetime of each system. For example, Verdi’s
network semantics for static networks with crash-reboot failures
tracks failed nodes in a set F and records the state of each node
in a total map Σ from node names to state. Figure 1 illustrates key
rules from our new semantics for dynamic networks under churn.
In particular, our new semantics adds a set N to track nodes that
have joined the network and turns Σ into a partial map defined only
on N . We assume an overlay network defined by an irreflexive
and symmetric relation on node names. Neighbors in the overlay
network detect one another’s arrivals and failures.

The DELIVER rule lets a live node take a message off of a read-
able channel, perform some action Hnet that updates its state, and
send any number of messages to other nodes. Messages are re-
ceived in the order they are sent, since in the tree-based aggrega-
tion case study discussed below reasoning with ordered delivery
has been more convenient than making causality arguments.

The START rule has an uninitialized node h join the network,
obtain an initial state from Hinit, and send a New message to each
neighbor of h in the overlay.

The FAIL rule lets a live node h fail and sends a Fail message
to each neighbor of h in the overlay. Thus, if we have eventual
message delivery, we have eventual detection of all failures.

Encoding networks under churn. Verdi systems provide the
types name, msg, and data of node addresses, messages, and node
state respectively. We represent configurations used in our network
semantics with the following Coq record type.

Record nw := { nwState: name -> option data;
nwFailed: list name; nwNodes : list name;
nwPackets: name -> name -> list msg }.

The semantics is encoded by an inductive step relation like the
following that has one constructor for each rule of the semantics.

Inductive step_churn : nw -> nw -> Prop :=
Start: (* .. *) | Fail: (* .. *) | Deliver: (* .. *) .

4. Reasoning About Liveness in Verdi
Establishing punctuated safety for a system requires proving a live-
ness property of all executions of the system starting from arbitrary
configurations reachable in a network under churn. However, these
proofs are carried out in a quiescent network semantics that pro-
hibits churn (e.g., the semantics in Figure 1 without the START and
FAIL rules). To support reasoning about liveness in Verdi, we define
executions as infinite sequences of states joined by labeled steps.
These executions are subject to fairness hypotheses on labels.

Infinite sequences. We encode executions in Coq using an ex-
tended version of an existing library for reasoning about infinite se-
quences based on coinductive types [1]. Our extended library sup-
ports all of the standard linear temporal logic operators (always,
eventually, etc.), and includes most standard operator equalities
along with many other lemmas we found useful in temporal rea-
soning.

Fairness. Many interesting liveness properties cannot be proved
without assuming some form of fairness between the actions taken
by a system. In particular, most liveness proofs would be impos-
sible if message delivery could be deferred indefinitely. We define
fairness based on the labels of steps between states in executions. A
label can be viewed as a handle on a particular kind of node action.
While the label on a particular transition is determined by the node
event handlers run in that transition, labels are elided at extraction
time. A label l is enabled at a state when the system is able to take
a step labeled with l starting from that state. Weak fairness on la-
bels, the key fairness notion we use, rules out executions where l
becomes enabled forever but never actually occurs.

To check the feasibility of our support for liveness reasoning in
Verdi, we proved a liveness property of a lock service. The lock ser-
vice manages a single shared lock in a network semantics without
failures. We proved that any client who requests the lock eventu-
ally receives it. Together with an earlier safety proof of mutually
exclusive lock access for the same system, the new liveness proof
establishes full functional correctness of the lock service.

5. System Decomposition
Conventional approaches to distributed systems verification focus
on establishing correctness for models which abstract away imple-
mentation details and usually involve only one protocol at a time.
Real-world systems rely on many separate protocols running con-
currently. Even when the correctness of each subsystem is verified
in isolation, properties of the top-level system may be violated due
to unintended interactions or erroneous assumptions. At the same

time, the large size of a complete system is a hindrance to verifica-
tion from scratch.

We suggest using a methodology based on VSTs in Verdi to
lift established properties of components of decomposed systems
to their analogues at the complete system level. Subsystems ob-
tained from decompositions process a strict subset of the top-level
system’s messages and evolve in lock-step with the complete sys-
tem. In Coq, decompositions are encoded as partial maps between
Verdi system definitions. This allows both safety properties about
reachable configurations and liveness properties about infinite exe-
cutions to be lifted from the subsystem where they were proven to
a top-level system. Successful lifting of a property requires show-
ing that the decomposition partial map preserves the property and
all of its hypotheses. For liveness properties, this usually requires
showing that some form of fairness is preserved by the partial map.

6. In-Progress Case Studies
Tree-Based Aggregation. Gathering data from the environment
over time is an important part of systems like network management
and sensor networking. In-network aggregation avoids centralized
data processing and lowers link congestion. In this approach, data
is sent from source nodes to a sink node which, in the absence
of churn, is expected to eventually hold the global aggregate. To
minimize the number of hops from source nodes to the sink node,
nodes assemble and maintain a spanning tree for the network.

We have encoded a churn-tolerant protocol for tree-based ag-
gregation in Verdi that performs data aggregation and tree building
independently. The aggregation component relies on failure detec-
tion to guarantee that no data is lost or added when node joins and
failures occur. The tree-building component ensures that in a quies-
cent network nodes eventually build a minimal spanning tree rooted
at the sink. The complete system relies on the properties of both ag-
gregation and tree-building to guarantee that aggregates are sound,
complete, and flow towards the sink.

Chord. Chord is a lookup protocol designed to serve as the sub-
strate for a distributed hash table. To assign responsibility for
lookups equally among nodes, Chord gives each node a unique
identifier by hashing their addresses into a circular identifier space.
A global ring structure is maintained by local state at each Chord
node consisting of pointers to nodes that are nearby in the identifier
space. In an ideal ring these pointers include all nearby nodes. Most
of the time, some nodes will be skipped due to churn rendering
pointer data invalid or incomplete. Correctness for Chord requires
the following punctuated safety property: any Chord ring disrupted
by churn will eventually become and remain ideal if it is given
enough time without churn. The published specifications of Chord
did not satisfy this property [4]. Zave has written a new specifica-
tion for Chord which is accompanied by a semi-automated proof of
punctuated safety [5]. We are working on an analogous proof for a
Verdi implementation of Zave’s new version of Chord.

References
[1] Y. Deng and J.-F. Monin. Verifying self-stabilizing population protocols

with Coq. In TASE 2009, July 2009.
[2] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,

and T. Anderson. Verdi: A framework for implementing and verifying
distributed systems. In PLDI 2015, June 2015.

[3] D. Woos, J. R. Wilcox, S. Anton, Z. Tatlock, M. D. Ernst, and T. Ander-
son. Planning for change in a formal verification of the Raft consensus
protocol. In CPP 2016, January 2016.

[4] P. Zave. Using lightweight modeling to understand Chord. ACM
SIGCOMM Computer Communication Review, 42(2), Apr. 2012.

[5] P. Zave. How to make Chord correct (using a stable base). CoRR,
abs/1502.06461, 2015. URL http://arxiv.org/abs/1502.06461.

