
Armada: Low-Effort Verification of
High-Performance Concurrent Programs

Jacob R. Lorch

Microsoft Research

USA

lorch@microsoft.com

Yixuan Chen

University of Michigan and

Yale University, USA

yixuan.chen@yale.edu

Manos Kapritsos

University of Michigan

USA

manosk@umich.edu

Bryan Parno

Carnegie Mellon University

USA

parno@cmu.edu

Shaz Qadeer

Calibra

USA

shaz@fb.com

Upamanyu Sharma

University of Michigan

USA

upamanyu@umich.edu

James R. Wilcox

Certora

USA

james@certora.com

Xueyuan Zhao

Carnegie Mellon University

USA

xueyuanz@alumni.cmu.edu

Abstract
Safely writing high-performance concurrent programs is

notoriously difficult. To aid developers, we introduce Ar-

mada, a language and tool designed to formally verify such

programs with relatively little effort. Via a C-like language

and a small-step, state-machine-based semantics, Armada

gives developers the flexibility to choose arbitrary mem-

ory layout and synchronization primitives so they are never

constrained in their pursuit of performance. To reduce de-

veloper effort, Armada leverages SMT-powered automation

and a library of powerful reasoning techniques, including

rely-guarantee, TSO elimination, reduction, and alias analy-

sis. All these techniques are proven sound, and Armada can

be soundly extended with additional strategies over time.

Using Armada, we verify four concurrent case studies and

show that we can achieve performance equivalent to that of

unverified code.

CCS Concepts: • Software and its engineering → For-
mal software verification; Concurrent programming
languages.

Keywords: refinement, weak memory models, x86-TSO

ACM Reference Format:
Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan Parno, Shaz

Qadeer, Upamanyu Sharma, James R. Wilcox, and Xueyuan Zhao.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’20, June 15–20, 2020, London, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00

https://doi.org/10.1145/3385412.3385971

2020. Armada: Low-Effort Verification of High-Performance Con-

current Programs. In Proceedings of the 41st ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implemen-
tation (PLDI ’20), June 15–20, 2020, London, UK. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3385412.3385971

1 Introduction
Ever since processor speeds plateaued in the early 2000s,

building high-performance systems has increasingly relied

on concurrency. Writing concurrent programs, however, is

notoriously error-prone, as programmers must consider all

possible thread interleavings. If a bug manifests on only

one such interleaving, it is extremely hard to detect using

traditional testing techniques, let alone to reproduce and

repair. Formal verification provides an alternative: a way to

guarantee that the program is completely free of such bugs.

This paper presents Armada, a methodology, language,

and tool that enable low-effort verification of high-perfor-

mance, concurrent code. Armada’s contribution rests on

three pillars: flexibility for high performance; automation to

reduce manual effort; and an expressive, low-level frame-

work that allows for sound semantic extensibility. These three
pillars let us achieve automated verification, with semantic

extensibility, of concurrent C-like imperative code executed

in a weak memory model (x86-TSO [35]).

Prior work (§7) has achieved some of these but not simulta-

neously. For example, Iris [25] supports powerful and sound

semantic extensibility but focuses less on automation and

C-like imperative code. Conversely, CIVL [19], for instance,

supports automation and imperative code without sound

extensibility; instead it relies on paper proofs when using

techniques like reduction, and the CIVL team is continuously

introducing new trusted tactics as they find more users and

programs [36]. Recent work building larger verified con-

current systems [6, 7, 17] supports sound extensibility but

sacrifices flexibility, and thus some potential for performance

optimization, to reduce the burden of proof writing.

In contrast, Armada achieves all three properties, which

we now expand and discuss in greater detail:

https://doi.org/10.1145/3385412.3385971
https://doi.org/10.1145/3385412.3385971

PLDI ’20, June 15–20, 2020, London, UK J. R. Lorch, Y. Chen, M. Kapritsos, B. Parno, S. Qadeer, U. Sharma, J. R. Wilcox, X. Zhao

Flexibility To support high-performance code, Armada lets

developers choose any memory layout and any synchroniza-

tion primitives they need for high performance. Fixing on

any one strategy for concurrency or memory management

will inevitably rule out clever optimizations that developers

come up with in practice. Hence, Armada uses a common

low-level semantic framework that allows arbitrary flexibil-

ity, akin to the flexibility provided by a C-like language; e.g.,

it supports pointers to fields of objects and to elements of

arrays, lock-free data structures, optimistic racy reads, and

cache-friendly memory layouts. We enable such flexibility by

using a small-step state-machine semantics rather than one

that preserves structured program syntax but limits a priori

the set of programs that can be verified.

Automation However, actually writing programs as state

machines is unpleasantly tedious. Hence, Armada introduces

a higher-level syntax that lets developers write imperative

programs that are automatically translated into state-machine

semantics. To prove these programs correct, the developer

then writes a series of increasingly simplified programs and

proves that each is a sound abstraction of the previous pro-

gram, eventually arriving at a simple, high-level specification

for the system. To create these proofs, the Armada developer

simply annotates each level with the proof strategy neces-

sary to support the refinement proof connecting it to the

previous level. Armada then analyzes both levels and auto-

matically generates a lemma demonstrating that refinement

holds. Typically, this lemma uses one of the libraries we have

developed to support eight common concurrent-systems

reasoning patterns (e.g., logical reasoning about memory

regions, rely-guarantee, TSO elimination, and reduction).

These lemmas are then verified by an SMT-powered theorem

prover. Explicitly manifesting Armada’s lemmas lets devel-

opers perform lemma customization, i.e., augmentations to

lemmas in the rare cases where the automatically generated

lemmas are insufficient.

Sound semantic extensibility Each of Armada’s proof-

strategy libraries, and each proof generated by our tool, is

mechanically proven to be correct. Insisting on verifying

these proofs gives us the confidence to extend Armada with

arbitrary reasoning principles, including newly proposed

approaches, without worrying that in the process we may

undermine the soundness of our system. Note that inventing

new reasoning principles is an explicit non-goal for Armada;

instead we expect Armada’s flexible design to support new

reasoning principles as they arise.

Our current implementation of Armada uses Dafny [27] as

a general-purpose theorem prover. Dafny’s SMT-based [11]

automated reasoning simplifies development of our proof li-

braries and developers’ lemma customizations, but Armada’s

broad structure and approach are compatiblewith any general-

purpose theorem prover. We extend Dafny with a backend

that produces C code that is compatible with ClightTSO [41],

Figure 1. Armada Overview The Armada developer writes a low-
level implementation in Armada designed for performance. They then
define a series of levels, each of which abstracts the program at the
previous level, eventually reaching a small, simple specification. Each
refinement is justified by a simple refinement recipe specifying which
refinement strategy to use. As shown via blue arrows, Armada auto-
matically translates each program into a state machine and generates
refinement proofs demonstrating that the refinement relation R holds
between each pair of levels. Finally, it uses transitivity to show that
R holds between the implementation and the spec.

which can then be compiled to an executable by CompCert-

TSO in a way that preserves Armada’s guarantees.

We evaluate Armada on four case studies and show that

it handles complex heap and concurrency reasoning with

relatively little developer-supplied proof annotation. We also

show that Armada programs can achieve performance com-

parable to that of unverified code.

In summary, this paper makes the following contributions.

• A flexible language for developing high-performance,

verified, concurrent systems code.

• A mechanically-verified, extensible semantic frame-

work that already supports a collection of eight verified

libraries for performing refinement-based proofs, in-

cluding region-based pointer reasoning, rely-guarantee,

TSO elimination, and reduction.

• A practical tool that uses the above techniques to en-

able reasoning about complex concurrent programs

with modest developer effort.

2 Overview
As shown in Figure 1, to use Armada, a developer writes

an implementation program in the Armada language. They

also write an imperative specification, which need not be

performant or executable, in that language. This specification

should be easy to read and understand so that others can

determine (e.g., through inspection) whether it meets their

expectations. Given these two programs, Armada’s goal is to

prove that all finite behaviors of the implementation simulate

the specification, i.e., that the implementation refines the
specification. The developer defines what this means via a

refinement relation (R). For instance, if the state contains a

console log, the refinement relation might be that the log in

the implementation is a prefix of that in the spec.

Armada: Low-Effort Verification of High-Performance Concurrent Programs PLDI ’20, June 15–20, 2020, London, UK

Because of the large semantic gap between the imple-

mentation and specification, we do not attempt to directly

prove refinement. Instead, the developer writes a series of N
Armada programs to bridge the gap between the implemen-

tation (level 0) and the specification (level N +1). Each pair of
adjacent levels i, i + 1 in this series should be similar enough

to facilitate automatic generation of a refinement proof that

respects R; the developer supplies a short proof recipe that
gives Armada enough information to automatically generate

such a proof. Given the pairwise proofs, Armada leverages

refinement transitivity to prove that the implementation

indeed refines the specification.

We formally express refinement properties and their proofs

in the Dafny language [27]. To formally describe what re-

finement means, Armada translates each program into its

small-step state-machine semantics, expressed in Dafny. For

instance, we represent the state of a program as a Dafny

datatype and the set of its legal transitions as a Dafny pred-

icate over pairs of states. To formally prove refinement be-

tween a pair of levels, we generate a Dafny lemma whose

conclusion indicates a refinement relation between their

state machines. We use Dafny to verify all proof material we

generate, so ultimately the only aspect of Armada we must

trust is its translation of the implementation and specifica-

tion into state machines.

2.1 Example specification and implementation
To introduce Armada, we describe its use on an example

program that searches for a good, but not necessarily optimal,

solution to an instance of the traveling salesman problem.

The specification, shown in Figure 2, demands that the

implementation output a valid solution, and it implicitly

requires the program not to crash. Armada specifications can

use powerful declarations as statements. Here, the somehow
statement expresses that somehow the program updates s
so that valid_soln(s) holds.

The example implementation, also shown in Figure 2, cre-

ates 100 threads, and each thread searches through 10,000

random solutions. If a thread finds a solution shorter than

the best length found so far, it updates the global variables

storing the best length and solution. The main routine joins

the threads and prints the best solution found.

Note that this example has a benign race: the access to the

shared variable best_len in the first if (len < best_len).
It is benign because the worst consequence of reading a stale

value is that the thread unnecessarily acquires the mutex.

2.2 Example proof strategy
Figure 3 depicts the program, called ArbitraryGuard, at
level 1 in our example proof. This program is like the im-

plementation except that it arbitrarily chooses whether to

acquire the lock, by using * in place of the guard condition

len < best_len.

level Specification {
void main() {
var s:Solution;
somehow modifies s ensures valid_soln(s);
output_solution(s);

}
}

level Implementation {
// Global variables
var best_solution:Solution;
var best_len:uint32 := 0xFFFFFFFF;
var mutex:Mutex;

void worker() { // Thread to search for good solution
var i:int32 := 0, s:Solution, len:uint32;
while i < 10000 {
choose_random_solution(&s);
len = get_solution_length(&s);
if (len < best_len) {
lock(&mutex);
if (len < best_len) {
best_len := len;
copy_solution(&best_solution, &s);

}
unlock(&mutex);

}
i := i + 1;

}
}

void main() { // Main routine run at start
var i:int32 := 0;
var a:uint64[100];
initialize_mutex(&mutex);
while i < 100 {
a[i] := create_thread worker();
i := i + 1;

}
i := 0;
while i < 100 {
join a[i];
i := i + 1;

}
print_solution(&best_solution);

}
}

Figure 2. The Armada spec and implementation for our running
example, which searches for a not-necessarily-optimal solution to a
traveling salesman problem

level ArbitraryGuard {
...
len = get_solution_length(&s);
if (*) { // arbitrary choice as guard
lock(&mutex);
if (len < best_len) {
best_len := len;
copy_solution(&best_solution, &s);

}
unlock(&mutex);

}
...

}

Figure 3. Version of our example program in which the first guard
condition is relaxed to an arbitrary choice

Our transformation of the Implementation program to

the ArbitraryGuard program is an example of weakening,
where a statement is replaced by one whose behaviors are a

superset of the original. Or, more precisely, a state-transition

relation is replaced by a superset of that relation. The two

PLDI ’20, June 15–20, 2020, London, UK J. R. Lorch, Y. Chen, M. Kapritsos, B. Parno, S. Qadeer, U. Sharma, J. R. Wilcox, X. Zhao

proof ImplementationRefinesArbitraryGuard {
refinement Implementation ArbitraryGuard
weakening

}

Figure 4. In this recipe for a refinement proof, the first line indi-
cates what should be proved (that the Implementation-level program
refines the ArbitraryGuard-level program) and the second line indi-
cates which strategy (in this case, weakening) generates the proof.

level BestLenSequential {
...
if (len < best_len) {
best_len ::= len; // immediately visible to all threads
copy_solution(&best_solution, &s);

}
...

}

Figure 5. Version of the example program where the assignment to
best_len is now sequentially consistent

proof ArbitraryGuardRefinesBestLenSequential {
refinement ArbitraryGuard BestLenSequential
tso_elim best_len "s.s.globals.mutex.holder == $me"

}

Figure 6. This recipe proves that the ArbitraryGuard-level pro-
gram refines the BestLenSequential-level program. It uses TSO
elimination based on strategy-specific parameters; in this case, the
first parameter (best_len) indicates which location’s updates differ
between levels and the second parameter is an ownership predicate.

levels’ programs thus exhibit weakening correspondence, i.e.,
it is possible to map each low-level program step to an equiv-

alent or weaker one in the high-level program. The proof

that Implementation refines ArbitraryGuard is straight-

forward but tedious to write, so instead the developer simply

writes a recipe for this proof, shown in Figure 4. This recipe

instructs Armada to generate a refinement proof using the

weakening correspondence between the program pair.

Having removed the racy read of best_len, we can now

demonstrate an ownership invariant: that threads only access

that variable while they hold the mutex, and no two threads

ever hold the mutex. This allows a further transformation

of the program to the one shown in Figure 5. This replaces

the assignment best_len := len with best_len ::= len,
signifying the use of sequentially consistent memory se-

mantics for the update rather than x86-TSO semantics [35].

Since strong consistency is easier to reason about than weak-

memory semantics, proofs for further levels will be easier.

Just as for weakening, Armada generates a proof of re-

finement between programs whose only transformation is a

replacement of assignments to a variable with sequentially-

consistent assignments. For such a proof, the developer’s

recipe supplies the variable name and the ownership predi-

cate, as shown in Figure 6.

If the developer mistakenly requests a TSO-elimination

proof for a pair of levels that do not permit it (e.g., if the

first level still has the racy read and thus does not own the

location when it accesses it), then Armada will either gener-

ate an error message indicating the problem or generate an

invalid proof. In the latter case, running the proof through

the theorem prover (i.e., Dafny verifier) will produce an er-

ror message. For instance, it might indicate which statement

may access the variable without satisfying the ownership

predicate or which statement might cause two threads to

simultaneously satisfy the ownership predicate.

3 Semantics and Language Design
Armada is committed to allowing developers to adopt any

memory layout and synchronization primitives needed for

high performance. This affects the design of the Armada

language and our choice of semantics.

The Armada language (§3.1) allows the developer to write

their specification, code, and proofs in terms of programs,

and the core language exposes low-level primitives (e.g.,

fixed-width integers or specific hardware-based atomic in-

structions) so that the developer is not locked into a partic-

ular abstraction and can reason about the performance of

their code without an elaborate mental model of what the

compiler might do. This also simplifies the Armada compiler.

To facilitate simpler, cleaner specifications and proofs,

Armada also includes high-level and abstract features that are

not compilable. For example, Armada supports mathematical

integers, and it allows arbitrary sequences of instructions to

be performed atomically (given suitable proofs).

The semantics of an Armada program (§3.2), however,

are expressed in terms of a small-step state machine, which

provides a “lowest common denominator” for reasoning via

a rich and diverse set of proof strategies (§4). It also avoids

baking in assumptions that facilitate one particular strategy

but preclude others.

3.1 The Armada Language
As shown in Figure 1, developers express implementations,

proof steps, and specifications all as programs in the Ar-

mada language. This provides a natural way of describing

refinement: an implementation refines a specification if all

of its externally-visible behaviors simulate behaviors of the

specification. The developer helps prove refinement by bridg-

ing the gap between implementation and specification via

intermediate-level programs.

We restrict the implementation level to the core Armada

features (§3.1.1), which can be compiled directly to corre-

sponding low-level C code. The compiler will reject programs

outside this core. Programs at all other levels, including the

specification, can use the entirety of Armada (§3.1.2), sum-

marized in Figure 7. Developers connect these levels together

using a refinement relation (§3.1.3). To let Armada programs

Armada: Low-Effort Verification of High-Performance Concurrent Programs PLDI ’20, June 15–20, 2020, London, UK

Types
T ::= uint8 | uint16 | uint32 | uint64

| int8 | int16 | int32 | int64 (primitive types)
| ptr<T> (pointers)
| T[N] (arrays)
| struct {var ⟨field⟩:T; . . .} (structs)
| int | (T , . . . ,T) | T → T (mathematical types)
| x : T "|" e (subset types)
| . . .

Expressions
e ::= ⟨literal⟩ | ⟨variable⟩

| ⟨uop⟩ e | e1 ⟨bop⟩ e2 (unary/binary operators)
| &e | *e | null (pointer manipulation)
| e.⟨field⟩ (struct manipulation)
| e1[e2] (indexing)
| * (non-deterministic value)
| old(e) (old value of e in two-state predicate)
| allocated(e) | allocated_array(e) (validity)
| $me | $sb_empty (meta variables)
| . . .

Statements
⟨LHS⟩ ::= ⟨variable⟩ | *e | e.⟨field⟩ | e[e]
⟨RHS⟩ ::= e | ⟨method⟩(e, . . .)

| malloc(T) | calloc(T, e) (allocation)
| create_thread ⟨method⟩(e, . . .) (threads)

⟨spec⟩ ::= | requires e | modifies e | ensures e
S ::= var ⟨variable⟩:T [:= ⟨RHS⟩];

| ⟨LHS⟩, . . . := ⟨RHS⟩, . . .; (assignment)
| ⟨LHS⟩, . . . ::= ⟨RHS⟩, . . .;
| (TSO-bypassing assignment)
| if e S1 else S2 | while e1 [invariant e2] S
| break; | continue; | assert e; | S1 S2
| dealloc e; | join e; | label ⟨label⟩: S
| somehow ⟨spec⟩*; (declarative atomic action)
| explicit_yield {S} | yield; (atomicity)
| assume e; S (enablement condition)

Figure 7. Armada language syntax

use external libraries and special hardware features, we also

support developer-defined external methods (§3.1.4).

3.1.1 Core Armada. The core of Armada supports fea-

tures commonly used in high-performance C implementa-

tions. It has as primitive types signed and unsigned integers

of 8, 16, 32, and 64 bits, and pointers. It supports arbitrary

nesting of structs and single-dimensional arrays, including

structs of arrays and arrays of structs. It lets pointers
point not only to whole objects but also to fields of structs
and elements of arrays. It does not yet support unions.

For control flow, it supports method calls, return, if, and
while, along with break and continue. It does not support
arbitrary control flow, e.g., goto.
It supports allocation of objects (malloc) and arrays of

objects (calloc), and freeing them (dealloc). It supports
creating threads (create_thread) and waiting for their com-

pletion (join).

Each statement may have at most one shared-location

access, since the hardware does not support atomic perfor-

mance of multiple shared-location accesses.

3.1.2 Proof and specification support. The full Armada

language offers rich expressivity to allow natural descrip-

tions of specifications. Furthermore, all program levels be-

tween the implementation and specification are abstract con-

structs that exist solely to facilitate the proof, so they too use

this full expressivity. Below, we briefly describe interesting

features of the language.

Atomic blocks are modeled as executing to completion

without interruption by other threads. The semantics of an

atomic block prevents thread interruption but not termina-

tion; a behavior may terminate in the middle of an atomic

block. This allows us to prove that a block of statements can

be treated as atomic without proving that no statement in

the block exhibits undefined behavior (see §3.2.3).

Following CIVL [19], we permit some program counters

within otherwise-atomic blocks to be marked as yield points.
Hence, the semantics of an explicit_yield block is that a

thread t within such a block cannot be interrupted by another
thread unless t ’s program counter is at a yield point (marked

by a yield statement). This permits modeling atomic se-

quences that span loop iterations without having to treat

the entire loop as atomic. §4.2.1 shows the utility of such

sequences, and Flanagan et al. describe further uses in proofs

of atomicity via purity [15].

Enablement conditions can be attached to a statement,

which cannot execute unless all its conditions are met.

TSO-bypassing assignment statements perform an up-

date with sequentially-consistent semantics. Normal assign-

ments (using :=) follow x86-TSO semantics (§3.2.1), but as-

signments using ::= are immediately visible to other threads.

Somehow statements allow the declarative expression

of arbitrary atomic-step specifications. A somehow statement

can have requires clauses (preconditions), modifies clauses
(framing), and ensures clauses (postconditions). The seman-

tics of a somehow statement is that it has undefined behavior

if any of its preconditions are violated, and that it modifies

the lvalues in its framing clauses arbitrarily, subject to the

constraint that each two-state postcondition predicate holds

between the old and new states.

Ghost variables represent state that is not part of the ma-

chine state and has sequentially-consistent semantics. Ghost

variables can be of any type supported by the theorem prover,

not just those that can be compiled to C. Ghost types sup-

ported by Armada include mathematical integers; datatypes;

sequences; and finite and infinite sets, multisets, and maps.

Assert statements crash the program if their predicates

do not hold.

3.1.3 Refinement relations. Armada aims to prove that

the implementation refines the specification. The developer
defines, via a refinement relation R, what refinement means.

PLDI ’20, June 15–20, 2020, London, UK J. R. Lorch, Y. Chen, M. Kapritsos, B. Parno, S. Qadeer, U. Sharma, J. R. Wilcox, X. Zhao

var snapshot;
if (!precondition_satisfied()) {
ManifestUndefinedBehavior();

}
havoc_write_set();
snapshot := read_read_set();
while (* || !post_condition_satisfied()) {
if (snapshot != read_read_set()) {
ManifestUndefinedBehavior();

}
havoc_write_set();
snapshot := read_read_set();

}

Figure 8. Default model for external methods, where the read set
is the list of locations in reads clauses and the write set is the list of
locations in modifies clauses

Formally, R ⊆ S0 × SN+1, where Si is the set of states of the
level-i program, level 0 is the implementation, and level N +1
is the spec. A pair ⟨s0, sN+1⟩ is in R if s0 is acceptably equiv-

alent to sN+1. An implementation refines the specification if

every finite behavior of the implementation may, with the

addition of stuttering steps, simulate a finite behavior of the

specification where corresponding state pairs are in R.

The developer writes R as an expression parameterized

over the low-level and high-level states. Hence, we can also

use R to define what refinement means between programs at

consecutive levels in the overall refinement proof, i.e., to de-

fine Ri ,i+1 for arbitrary level i . To allow composition into an

overall proof,Rmust be transitive:∀i, si , si+1, si+2 . ⟨si , si+1⟩ ∈
Ri ,i+1 ∧ ⟨si+1, si+2⟩ ∈ Ri+1,i+2 ⇒ ⟨si , si+2⟩ ∈ Ri ,i+2.

3.1.4 External methods. Since we do not expect Armada

programs to run in a vacuum, Armada supports declaring

and calling external methods. An external method models a

runtime, library, or operating-system function; or a hardware

instruction the compiler supports, like compare-and-swap.

For example, the developer could model a runtime-supplied

print routine via:

method {:extern} PrintInteger(n:uint32) {
somehow modifies log ensures log == old(log) + [n];

}

In a sequential program, we could model an external call

via a straightforward Hoare-style signature. However, in a

concurrent setting, this could be unsound if, for example, the

external library were not thread-safe. Hence, we allow the

Armada developer to supply a more detailed, concurrency-

aware model of the external call as a “body” for the method.

This model is not, of course, compiled, but it dictates the

effects of the external call on Armada’s underlying state-

machine model.

If the developer does not supply a model for an external

method, we model it via the Armada code snippet in Fig-

ure 8. That is, we model the method as making arbitrary and

repeated changes to its write set (as specified in a modifies
clause); as having undefined behavior if a concurrent thread

ever changes its read set (as specified in a reads clause);

and as returning when its postcondition is satisfied, but not

necessarily as soon as it is satisfied.

3.2 Small-step state-machine semantics
To create a soundly extensible semantic framework, Armada

translates an Armada program into a state machine that

models its small-step semantics. We represent the state of a

program as a Dafny datatype that contains the set of threads,

the heap, static variables, ghost state, and whether and how

the program terminated. Thread state includes the program

counter, the stack, and the x86-TSO store buffer (§3.2.1). We

represent steps of the state machine (i.e., the set of legal tran-

sitions) as a Dafny predicate over pairs of states. Examples

of steps include assignment, method calls and returns, and

evaluating the guard of an if or while.
The semantics are generally straightforward; the main

source of complexity is the encoding of the x86-TSO model

(§3.2.1). Hence, we highlight three interesting elements of

our semantics: they are program-specific (§3.2.2), they model

undefined behavior as a terminating state (§3.2.3), and they

model the heap as immutable (§3.2.4).

3.2.1 x86 Total-Store Order (TSO). We model memory

using x86-TSO semantics [35]. Specifically, a thread’s write is

not immediately visible to other threads, but rather enters a

store buffer, a first-in-first-out (FIFO) queue. A write becomes

globally visible when the processor asynchronously drains

it from a store buffer.

To model this, our state includes a store buffer for each

thread and a global memory. A thread’s local view of memory

is what would result from applying its store buffer, in FIFO

order, to the global memory.

3.2.2 Program-specific semantics. To aid in automated

verification of state-machine properties, we tailor each state

machine to the program rather than make it generic to all

programs. Such specificity ensures the verification condition

for a specific step relation includes only facts about that step.

Specificity also aids reasoning by case analysis by restrict-

ing the space of program counters, heap types, and step types.

Specifically, the program-counter type is an enumerated type

that only includes PC values in the program. The state’s heap

only allows built-in types and user-defined struct types

that appear in the program text. The global state and each

method’s stack frame is a datatype with fields named after

program variables that never have their address taken.

Furthermore, the state-machine step (transition) type is

an enumerated type that includes only the specific steps in

the program. Each step type has a function that describes its

specific semantics. For instance, there is no generic function

for executing an update statement; instead, for each update

statement there is a program-specific step function with the

specific lvalue and rvalue from the statement.

The result is semantics that are SMT-friendly; i.e., Dafny

automatically discharges many proofs with little or no help.

Armada: Low-Effort Verification of High-Performance Concurrent Programs PLDI ’20, June 15–20, 2020, London, UK

3.2.3 Undefined behavior as termination. Our seman-

tics has three terminating states. These occur when the pro-

gram exits normally, when asserting a false predicate, and

when invoking undefined behavior. The latter means exe-

cuting a statement under conditions we do not model, e.g.,

an access to a freed pointer or a division by zero. Our de-

cision to model undefined behavior as termination follows

CIVL [19] and simplifies our specifications by removing a

great deal of non-determinism. It also simplifies reasoning

about behaviors, e.g., by letting developers state invariants

that do not necessarily hold after such an undefined action

occurs. However, this decision means that, as in CIVL, our re-

finement proofs are meaningless if (1) the spec ever exhibits

undefined behavior, or (2) the refinement relation R allows

the low-level program to exhibit undefined behavior when

the high-level program does not. We prevent (2) by adding

to the developer-specified R the conjunct “if the low-level

program exhibits undefined behavior, then the high-level

program does”. Preventing condition (1) currently relies on

the careful attention of the specification writer (or reader).

3.2.4 Immutable heap structure. To permit pointers to

fields of structs and to array elements, we model the heap

as a forest of pointable-to objects. The roots of the forest

are (1) allocated objects and (2) global and local variables

whose addresses are taken in the program text. An array

object has its elements as children and a struct object has
its fields as children. To simplify reasoning, we model the

heap as unchanging throughout the program’s lifetime; i.e.,

allocation is modeled not as creating an object but as finding

an object and marking its pointers as valid; freeing an object

marks all its pointers as freed.

To make this sound, we restrict allowable operations to

ones whose compiled behaviors lie within our model. Some

operations, like dereferencing a pointer to freed memory

or comparing another pointer to such a pointer, trigger un-

defined behavior. We disallow all other operations whose

behavior could diverge from our model. For instance, we

disallow programs that cast pointers to other types or that

perform mathematical operations on pointers.

Due to their common use in C array idioms, we do permit

comparison between pointers to elements of the same array,

and adding to (or subtracting from) a pointer to an array

element. That is, wemodel pointer comparison and offsetting

but treat them as having undefined behavior if they stray

outside the bounds of a single array.

4 Refinement Framework
Armada’s goals rely on our extensible framework for au-

tomatic generation of refinement proofs. The framework

consists of:

Strategies A strategy is a proof generator designed for a

particular type of correspondence between a low-level and

a high-level program. An example correspondence is weak-
ening; two programs exhibit it if they match except for state-

ments where the high-level version admits a superset of

behaviors of the low-level version.

Library Our library of generic lemmas are useful in proving

refinements between programs. Often, they are specific to a

certain correspondence.

Recipes The developer generates a refinement proof be-

tween two program levels by specifying a recipe. A recipe

specifies which strategy should generate the proof, and the

names of the two program levels. Figure 4 shows an example.

Verification experts can extend the framework with new

strategies and library lemmas. Developers can leverage these

new strategies via recipes. Armada ensures sound extensibil-

ity because for a proof to be considered valid, all its lemmas

and all the lemmas in the library must be verified by Dafny.

Hence, arbitrarily complex extensions can be accommodated.

For instance, we need not worry about unsoundness or incor-

rect implementation of the Cohen-Lamport reduction logic

we use in §4.2.1 or the rely-guarantee logic we use in §4.2.2.

4.1 Aspects common to all strategies
Each strategy can leverage a set of Armada tools. For in-

stance, we providemachinery to prove each developer-supplied

inductive invariant is inductive and to produce a refinement

function that maps low-level states to high-level states.

The most important generic proof technique we provide

is non-determinism encapsulation. State-transition relations

are non-deterministic because some program statements are

non-deterministic; e.g., a method call will set uninitialized

stack variables to arbitrary values. Reasoning about such

general relations is challenging, so we encapsulate all non-

deterministic parameters in each step and manifest them in

a step object. For instance, if a method M has uninitialized

stack variable x , then each step object corresponding to a

call toM has a field newframe_x that stores x ’s initial value.
The proof can then reason about the low-level program us-

ing an annotated behavior, which consists of a sequence of

states, a sequence of step objects, and, importantly, a function

NextState that deterministically computes state i + 1 from
state i and step object i . This way, the relationship between

pairs of adjacent states is no longer a non-deterministic rela-

tion but a deterministic function, making reasoning easier.

4.1.1 Regions. To simplify proofs about pointers, we use

region-based reasoning, where memory locations (i.e., ad-

dresses) are assigned abstract region ids. Proving that two

pointers are in different regions shows they are not aliased.

We carefully design our region reasoning to be automation-

friendly and compatible with any Armada strategy. To assign

regions to memory locations, rather than rely on developer-

supplied annotations, we use Steensgaard’s algorithm [40].

PLDI ’20, June 15–20, 2020, London, UK J. R. Lorch, Y. Chen, M. Kapritsos, B. Parno, S. Qadeer, U. Sharma, J. R. Wilcox, X. Zhao

Our implementation of Steensgaard’s algorithm begins by as-

signing distinct regions to all memory locations, then merges

the regions of any two variables assigned to each other.

We perform region reasoning purely in Armada-generated

proofs, without requiring changes to the program or the state

machine semantics. Hence, in the future, we can add more

complex alias analysis as needed.

To employ region-based reasoning, the developer simply

adds use_regions to a recipe. Armada then performs the

static analysis described above, generates the pointer invari-

ants, and generates lemmas to inductively prove the invari-

ants. If regions are overkill and the proof only requires an

invariant that all addresses of in-scope variables are valid and

distinct, the developer instead adds use_address_invariant.

4.1.2 Lemma customization. Occasionally, verification
fails for programs that correspond properly, because an

automatically-generated lemma has insufficient annotation

to guide Dafny. For instance, the developer may weaken

y := x & 1 to y := x % 2, which is valid but requires bit-

vector reasoning. Thus, Armada lets the developer arbitrarily

supplement an automatically-generated lemma with addi-

tional developer-supplied lemmas (or lemma invocations).

Armada’s lemma customization contrasts with static check-

ers such as CIVL [19]. The constraints on program correspon-

dence imposed by a static checker must be restrictive enough

to ensure soundness. If they are more restrictive than neces-

sary, a developer cannot appeal to more complex reasoning

to convince the checker to accept the correspondence.

4.2 Specific strategies
Our current implementation has eight strategies for eight

different correspondence types. We now describe them.

4.2.1 Reduction. Because of the complexity of reasoning

about all possible interleavings of statements in a concurrent

program, a powerful simplification is to replace a sequence

of statements with an atomic block. A classic technique

for achieving this is reduction [30], which shows that one

program refines another if the low-level program has a se-

quence of statements R1,R2, · · · ,Rn,N , L1, L2, . . . , Lm while

the high-level program replaces those statements with a sin-

gle atomic action having the same effect. Each Ri (Li) must

be a right (left) mover, i.e., a statement that commutes to the

right (left) with any step of another thread.

An overly simplistic approach is to consider two programs

to exhibit the reduction correspondence if they are equiv-

alent except for a sequence of statements in the low-level

program that corresponds to an atomic block with those

statements as its body in the high-level program. This for-

mulation would prevent us from considering cases where

the atomic blocks span loop iterations (e.g., Figure 9).

Instead, Armada’s approach to sound extensibility gives

us the confidence to use a generalization of reduction, due

to Cohen and Lamport [9], that allows steps that do not

Low level High level

lock(&mutex);
while (condition()) {
do_something();
unlock(&mutex);

lock(&mutex);
}
unlock(&mutex);

explicit_yield {
lock(&mutex);
while (condition()) {
do_something();
unlock(&mutex);
yield;
lock(&mutex);

}
unlock(&mutex);

}

Figure 9. Reduction requiring the use of Cohen-Lamport general-
ization because the atomic block spans loop iterations

necessarily correspond to consecutive statements in the pro-

gram. It divides the states of the low-level program into a

first phase (states following a right mover), a second phase

(states preceding a left mover), and no phase (all other states).

Programs may never pass directly from the second phase to

the first phase, and for every sequence of steps starting and

ending in no phase, there must be a step in the high-level

program with the same aggregate effect.

Hence our strategy considers two programs to exhibit the

reduction correspondence if they are identical except that

some yield points in the low-level program are not yield

points in the high-level program. The strategy produces

lemmas demonstrating that each Cohen-Lamport restriction

is satisfied; e.g., one lemma establishes that each step ending

in the first phase commutes to the right with each other step.

This requires generating many lemmas, one for each pair of

steps of the low-level program where the first step in that

pair is a right mover.

Our use of encapsulated nondeterminism (§4.1) greatly

aids the automatic generation of certain reduction lemmas.

Specifically, we use it in each lemma showing that a mover

commutes across another step, as follows. Suppose we want

to prove commutativity between a step σi by thread i that
goes from s1 to s2 and a step σj from thread j that goes from
s2 to s3. We must show that there exists an alternate-universe

state s ′
2
such that a step from thread j can take us from s1

to s ′
2
and a step from thread i can take us from s ′

2
to s3. To

demonstrate the existence of such an s ′
2
, we must be able

to automatically generate a proof that constructs such an

s ′
2
. Fortunately, our representation of a step encapsulates all

non-determinism, so it is straightforward to describe such

an s ′
2
as NextState(s1,σj). This simplifies proof generation

significantly, as we do not need code that can construct

alternative-universe intermediate states for arbitrary com-

mutations. All we must do is emit lemmas hypothesizing

that NextState(NextState(s1,σj),σi) = s3, with one lemma

for each pair of step types. The automated theorem prover

can typically dispatch these lemmas automatically.

4.2.2 Rely-guarantee reasoning. Rely-guarantee reason-
ing [20, 28] is a powerful technique for reasoning about

concurrent programs using Hoare logic. Our framework’s

Armada: Low-Effort Verification of High-Performance Concurrent Programs PLDI ’20, June 15–20, 2020, London, UK

Low level High level

t := best_len;

if (len < t) { ... }

t := best_len;
assume t >= ghost_best;
if (len < t) { ... }

Figure 10. In assume introduction, the high-level program has an
extra enabling condition. The correspondence might be proven by
establishing that best_len ≥ ghost_best is an invariant and that
ghost_best is monotonically non-increasing.

generality lets us leverage this style of reasoning without re-

lying on it as our only means of reasoning. Furthermore, our

level-based approach lets the developer use such reasoning

piecemeal. That is, they do not have to use rely-guarantee

reasoning to establish all invariants all at once. Rather, they
can establish some invariants and cement them into their

program, i.e., add them as enabling conditions in one level

so that higher levels can simply assume them.

Two programs exhibit the assume-introduction correspon-

dence if they are identical except that the high-level pro-

gram has additional enabling constraints on one or more

statements. The correspondence requires that each added

enabling constraint always holds in the low-level program

at its corresponding program position.

Figure 10 gives an example using a variant of our run-

ning traveling-salesman example. In this variant, the cor-

rectness condition requires that we find the optimal solu-

tion, so it is not reasonable to simply replace the guard

with * as we did in Figure 3. Instead, we want to justify

the racy read of best_len by arguing that the result it reads

is conservative, i.e., that at worst it is an over-estimate of

the best length so far. We represent this best length with

the ghost variable ghost_best and somehow establish that

best_len >= ghost_best is an invariant. We also establish

that between steps of a single thread, the variable ghost_best
cannot increase; this is an example of a rely-guarantee pred-

icate [20]. Together, these establish that t >= ghost_best
always holds before the evaluation of the guard.

Benefits. The main benefit to using assume-introduction

correspondence is that it adds enabling constraints to the

program being reasoned about. More enabling constraints

means fewer behaviors to be considered while locally rea-

soning about a step.

Another benefit is that it cements an invariant into the

program. That is, it ensures that what is an invariant now

will remain so even as further changes are made to the pro-

gram as the developer abstracts it. For instance, after proving

refinement of the example in Figure 10, the developer may

produce a next-higher-level program by weakening the as-

signment t := best_len to t := *. This usefully eliminates

the racy read to the variable best_len, but has the downside
of eliminating the relationship between t and the variable
best_len. But, now that we have cemented the invariant

that t >= ghost_best, we do not need this relationship

any more. Now, instead of reasoning about a program that

performs a racy read and then branches based on it, we only

reason about a program that chooses an arbitrary value and

then blocks forever if that value does not have the appropri-

ate relationship to the rest of the state. Notice, however, that

assume-introduction can only be used if this condition is al-

ready known to always hold in the low-level program at this

position. Therefore, assume-introduction never introduces

any additional blocking in the low-level program.

Proof generation. The proof generator for this strategy
uses rely-guarantee logic, letting the developer supply stan-

dard Hoare-style annotations. That is, the developer may

annotate each method with preconditions and postcondi-

tions, may annotate each loop with loop invariants, and may

supply invariants and rely-guarantee predicates.

Our strategy generates one lemma for each program path

that starts at a method’s entry andmakes no backward jumps.

This is always a finite path set, so it only has to generate

finitely many lemmas. Each such lemma establishes prop-

erties of a state machine that resembles the low-level pro-

gram’s state machine but differs in the following ways. Only

one thread ever executes and it starts at the beginning of

a method. Calling another method simply causes the state

to be havocked subject to its postconditions. Before evaluat-

ing the guard of a loop, the state changes arbitrarily subject

to the loop invariants. Between program steps, the state

changes arbitrarily subject to the rely-guarantee predicates

and invariants.

The generated lemmas must establish that each step main-

tains invariants and rely-guarantee predicates, that method

preconditions are satisfied before calls, that method post-

conditions are satisfied before method exits, and that loop

invariants are reestablished before jumping back to loop

heads. This requires several lemmas per path: one for each

invariant, one to establish preconditions if the path ends

in a method call, one to establish maintenance of the loop

invariant if the path ends just before a jump back to a loop

head, etc. The strategy uses these lemmas to establish the

conditions necessary to invoke a library lemma that proves

properties of rely-guarantee logic.

4.2.3 TSOelimination. Weobserve that even in programs

using sophisticated lock-free mechanisms, most variables

are accessed via a simple ownership discipline (e.g., “always

by the same thread” or “only while holding a certain lock”)

that straightforwardly provides data race freedom (DRF) [2].

It is well understood that x86-TSO behaves indistinguishably

from sequential consistency under DRF [5, 22]. Our level-

based approach means that the developer need not prove

they follow an ownership discipline for all variables to get

the benefit of reasoning about sequential consistency. In

particular, Armada allows a level where the sophisticated

variables use regular assignments and the simple variables

use TSO-bypassing assignments. Indeed, the developer need

not even prove an ownership discipline for all such variables

PLDI ’20, June 15–20, 2020, London, UK J. R. Lorch, Y. Chen, M. Kapritsos, B. Parno, S. Qadeer, U. Sharma, J. R. Wilcox, X. Zhao

var x:int32;
ghost var lockholder:Option<uint64>;
...
tso_elim x "s.s.ghosts.lockholder == Some(tid)"

Figure 11. Variables in a program, followed by invocation, in a
recipe, of the TSO-elimination strategy. The part in quotation marks
indicates under what condition the thread tid owns (has exclusive ac-
cess to) the variable x in state s: when the ghost variable lockholder
refers to that thread.

at once; they may find it simpler to reason about those vari-

ables one at a time or in batches. At each point, they can

focus on proving an ownership discipline just for the specific

variable(s) to which they are applying TSO elimination. As

with any proof, if the developer makes a mistake (e.g., by

not following the ownership discipline), Armada reports a

proof failure.

A pair of programs exhibits the TSO-elimination corre-

spondence if all assignments to a set of locations L in the

low-level program are replaced by TSO-bypassing assign-

ments. Furthermore, the developer supplies an ownership
predicate (as in Figure 11) that specifies which thread (if any)

owns each location in L. It must be an invariant that no two

threads own the same location at once, and no thread can

read or write a location in L unless it owns that location.

Any step releasing ownership of a location must ensure the

thread’s store buffer is empty, e.g., by being a fence.

4.2.4 Weakening. As discussed earlier, two programs ex-

hibit the weakening correspondence if they match except

for certain statements where the high-level version admits

a superset of behaviors of the low-level version. The strat-

egy generates a lemma for each statement in the low-level

program proving that, considered in isolation, it exhibits a

subset of behaviors of the corresponding statement of the

high-level program.

4.2.5 Non-deterministic weakening. A special case of

weakening is when the high-level version of the state tran-

sition is non-deterministic, with that non-determinism ex-

pressed as an existentially-quantified variable. For example,

in Figure 4 the guard on an if statement is replaced by the

* expression indicating non-deterministic choice. For sim-

plicity of presentation, that figure shows the recipe invoking

the weakening strategy, but in practice, it would use non-
deterministic weakening.
Proving non-deterministic weakening requires demon-

strating a witness for the existentially-quantified variable.

Our strategy uses various heuristics to identify this witness

and generate the proof accordingly.

4.2.6 Combining. Two programs exhibit the combining
correspondence if they are identical except that an atomic

block in the low-level program is replaced by a single state-

ment in the high-level program that has a superset of its

behaviors. This is analogous to weakening in that it replaces

what appears to be a single statement (an atomic block) with

a statement with a superset of behaviors. However, it differs

subtly because our model for an atomic block is not a single

step but rather a sequence of steps that cannot be interrupted

by other threads.

The key lemma generated by the combining proof gen-

erator establishes that all paths from the beginning of the

atomic block to the end of the atomic block exhibit behav-

iors permitted by the high-level statement. This involves

breaking the proof into pieces, one for each path prefix that

starts at the beginning of the atomic block and does not pass

beyond the end of it.

4.2.7 Variable introduction. A pair of programs exhibits

the variable-introduction correspondence if they differ only in
that the high-level programhas variables (and assignments to

those variables) that do not appear in the low-level program.

Our variable-introduction strategy creates refinement proofs

for program pairs exhibiting this correspondence. The main

use of this is to introduce ghost variables that abstract the

concrete state of the program. Ghost variables are easier

to reason about because they can be arbitrary types and

because they use sequentially-consistent semantics.

Another benefit of ghost variables is that they can obviate

concrete variables. Once the developer introduces enough

ghost variables, and establishes invariants linking the ghost

variables to concrete state, they can weaken the program

logic that depends on concrete variables to depend on ghost

variables instead. Once program logic no longer depends on

a concrete variable, the developer can hide it.

4.2.8 Variable hiding. A pair of programs ⟨L,H ⟩ exhibits

the variable-hiding correspondence if ⟨H , L⟩ exhibits the

variable-introduction correspondence. In other words, the

high-level program H has fewer variables than the low-level

program L, and L only uses those variables in assignments to

them. Our variable-hiding strategy creates refinement proofs

for program pairs exhibiting this correspondence.

5 Implementation
Our implementation consists of a state-machine translator

to translate Armada programs to state-machine descriptions;

a framework for proof generation and a set of tools fitting in

that framework; and a library of lemmas useful for invocation

by proofs of refinement. It is open-source and available at

https://github.com/microsoft/armada.
Since Armada is similar to Dafny, we implement the state-

machine translator using amodified version of Dafny’s parser

and type-inference engine. After the parser and resolver

run, our code performs state-machine translation. In all, our

state-machine translator is 13,191 new source lines of code

(SLOC [42]) of C#. Each state machine includes common Ar-

mada definitions of datatypes and functions; these constitute

873 SLOC of Dafny.

https://github.com/microsoft/armada

Armada: Low-Effort Verification of High-Performance Concurrent Programs PLDI ’20, June 15–20, 2020, London, UK

Name Description
Barrier Barrier described by Schirmer and Cohen [38]

as incompatible with ownership-based proofs

Pointers Program using multiple pointers

MCSLock Mellor-Crummey and Scott (MCS) lock [31]

Queue Lock-free queue from liblfds library [29, 32]

Table 1. Example programs used to evaluate Armada

Our proof framework is also written in C#. Its abstract

syntax tree (AST) code is a modification of Dafny’s AST code.

We have an abstract proof generator that deals with general

aspects of proof generation (§4.1), and we have one subclass

of that generator for each strategy. Our proof framework is

3,322 SLOC of C#.

We also extend Dafny with a 1,767-SLOC backend that

translates an Armada AST into C code compatible with

CompCertTSO [41], a version of CompCert [4] that ensures

the emitted code respects x86-TSO semantics.

Our general-purpose proof library is 5,618 SLOC of Dafny.

6 Evaluation
To show Armada’s versatility, we evaluate it on the pro-

grams in Table 1. Our evaluations show that we can prove

the correctness of: programs not amenable to verification

via ownership-based methodologies [38], programs with

pointer aliasing, lock implementations from previous frame-

works [16], and libraries of real-world high-performance

data structures.

6.1 Barrier
The Barrier program includes a barrier implementation de-

scribed by Schirmer and Cohen [38]: “each processor has a

flag that it exclusively writes (with volatile writes without

any flushing) and other processors read, and each processor

waits for all processors to set their flags before continuing

past the barrier.” They give this as an example that their

ownership-based methodology for reasoning about TSO pro-

grams cannot support. Like other uses of Owens’s publica-

tion idiom [34], this barrier is predicated on the allowance

of races between writes and reads to the same location.

The key safety property is that each thread does its post-

barrier write after all threads do their pre-barrier writes. We

cannot use the TSO-elimination strategy since the program

has data races, so we prove as follows. A first level uses

variable introduction to add ghost variables representing

initialization progress and which threads have performed

their pre-barrier writes. A second level uses rely-guarantee

to add an enabling condition on the post-barrier write that

all pre-barrier writes are complete. This condition implies

the safety property.

One author took ∼3 days to write the proof levels, mostly

to write invariants and rely-guarantee predicates involving

x86-TSO reasoning. Due to the complexity of this reasoning,

the original recipe had many mistakes; output from verifica-

tion failures aided discovery and repair.

The implementation is 57 SLOC. The first proof level uses

10 additional SLOC for new variables and assignments, and

5 SLOC for the recipe; Armada generates 3,649 SLOC of

proof. The next level uses 35 additional SLOC for enabling

conditions, loop invariants, preconditions, and postcondi-

tions; 114 SLOC of Dafny for lemma customization; and

102 further SLOC for the recipe, mostly for invariants and

rely-guarantee predicates. Armada generates 46,404 SLOC

of proof.

6.2 Pointers
The Pointers programwrites via distinct pointers of the same

type. The correctness of our refinement depends on our static

alias analysis proving these different pointers do not alias.

Specifically, we prove that the program assigning values via

two pointers refines a program assigning those values in the

opposite order. The automatic alias analysis reveals that the

pointers cannot alias and thus that the reversed assignments

result in the same state. The program is 29 SLOC, the recipe

is 7 SLOC, and Armada generates 2,216 SLOC of proof.

6.3 MCSLock
The MCSLock program includes a lock implementation de-

veloped by Mellor-Crummey and Scott [31]. It uses compare-

and-swap instructions and fences to achieve synchronization

between threads. It excels at fairness and cache-awareness

by having threads spin on their own locations. We use it to

demonstrate that our methodology allows modeling locks

hand-built out of hardware primitives, as done for CertiKOS [23].

Our proof establishes the safety property that statements

between acquire and release can be reduced to an atomic

block. We use six transformations for our refinement proof,

including the following two notable ones. The fifth trans-

formation proves that both acquire and release properly
maintain the ownership represented by ghost variables. For

example, acquire secures ownership and release returns
it. We prove this by introducing enabling conditions and an-

notating the program. The last transformation reduces state-

ments between acquire and release into a single atomic

block through reduction.

The implementation is 64 SLOC. Level 1 adds 13 SLOC to

the program and uses 4 SLOC for its recipe. Each of levels 2–

4 reduces program size by 3 SLOC and uses 4 SLOC for

its recipe. Level 5 adds 33 SLOC to the program and uses

103 SLOC for its recipe. Level 6 adds 2 SLOC to the program

and uses 21 SLOC for its recipe. Levels 5 and 6 collectively use

a further 141 SLOC for proof customization. In comparison,

the authors of CertiKOS verified an MCS lock via concurrent

certified abstraction layers [23] using 3.2K LOC to prove the

safety property.

PLDI ’20, June 15–20, 2020, London, UK J. R. Lorch, Y. Chen, M. Kapritsos, B. Parno, S. Qadeer, U. Sharma, J. R. Wilcox, X. Zhao

6.4 Queue
The Queue program includes a lock-free queue from the

liblfds library [29, 32], used at AT&T, Red Hat, and Xen. We

use it to show that Armada can handle a practical, high-

performance lock-free data structure.

Proof Our goal is to prove that the enqueue and dequeue

methods behave like abstract versions in which enqueue

adds to the back of a sequence and dequeue removes the first

entry of that sequence, as long as at most one thread of each

type is active. Our proof introduces an abstract queue, uses

an inductive invariant and weakening to show that logging

using the implementation queue is equivalent to logging

using the abstract queue, then hides the implementation.

This leaves a simpler enqueue method that appends to a

sequence, and a dequeue method that removes and returns

its first element.

It took ∼6 person-days to write the proof levels. Most

of this work involved identifying the inductive invariant

to support weakening of the logging using implementation

variables to logging using the abstract queue.

The implementation is 70 SLOC. We use eight proof trans-

formations, the fourth of which does the key weakening

described in the previous paragraph. The first three proof

transformations introduce the abstract queue using recipes

with a total of 12 SLOC. The fourth transformation uses a

recipe with 92 SLOC, including proof customization, and an

external file with 528 SLOC to define an inductive invariant

and helpful lemmas. The final four levels hide the imple-

mentation variables using recipes with a total of 16 SLOC,

leading to a final layer with 46 SLOC. From all our recipes,

Armada generates 24,540 SLOC of proof.

Performance We measure performance in Docker on

a machine with an Intel Xeon E5-2687W CPU running at

3.10 GHz with 8 cores and 32 GiB of memory. We use GCC

6.3.0 with -O2 and CompCertTSO 1.13.8255. We use liblfds

version 7.1.1 [29].We run (1,000 times) its built-in benchmark

for evaluating queue performance, using queue size 512.

Our Armada port of liblfds’s lock-free queue uses modulo

operators instead of bitmask operators, to avoid invoking bit-

vector reasoning. To account for this, we also measure liblfds-

modulo, a variant we write with the same modifications.

To account for the maturity difference between Comp-

CertTSO and modern compilers, we also report results for

the Armada code compiled with GCC. Such compilation is

not sound, since GCC does not necessarily conform to x86-

TSO; we only include these results to give an idea of how

much performance loss is due to using CompCertTSO. To

constrain GCC’s optimizations and thereby make the com-

parison somewhat reasonable, we insert the same barriers

liblfds uses before giving GCC our generated ClightTSO

code.

Figure 12 shows our results. The Armada version com-

piled with CompCertTSO achieves 70% of the throughput

liblf
ds (

GC
C)

liblf
ds-m

odu
lo (G

CC)

Arm
ada

(GC
C)

Arm
ada

(Co
mpCe

rtTS
O)

0

5 · 106

1 · 107

1.5 · 107

T
h
r
o
u
g
h
p
u
t
(
o
p
s
/
s
e
c
)

Figure 12. These are performance results for liblfds’s lock-free queue
vs. the corresponding code written in Armada. The Armada version,
and our variant liblfds-modulo, use modulo rather than bitmask
operations. Each data point is the mean of 1,000 trials; error bars
indicate 95% confidence intervals.

of the liblfds version compiled with GCC. Most of this per-

formance loss is due to the use of modulo operations rather

than bitmasks, and the use of a 2013-era compiler rather than

a modern one. After all, when we remove these factors, we

achieve virtually identical performance (99% of throughput).

This is not surprising since the code is virtually identical.

7 Related Work
Concurrent separation logic [33] is based on unique own-

ership of heap-allocated memory via locking. Recognizing

the need to support flexible synchronization, many program

logics inspired by concurrent separation logic have been de-

veloped to increase expressiveness [10, 12, 13, 21, 26]. We are

taking an alternative approach of refinement over small-step

operational semantics that provides considerable flexibility

at the cost of low-level modeling whose overhead we hope

to overcome via proof automation.

CCAL and concurrent CertiKOS [17, 18] propose certified
concurrent abstraction layers. Cspec [6] also uses layering

to verify concurrent programs. Layering means that a sys-

tem implementation is divided into layers, each built on top

of the other, with each layer verified to conform to an API

and specification assuming that the layer below conforms

to its API and specification. Composition rules in CCAL en-

sure end-to-end termination-sensitive contextual refinement

properties when the implementation layers are composed

together. Armada does not (yet) support layers: all compo-

nents of a program’s implementation must be included in

level 0. So, Armada currently does not allow independent ver-

ification of one module whose specification is then used by

another module. Also, Armada only proves properties about

programs while CCAL supports general composition, such

as the combination of a verified operating system, thread

library, and program. On the other hand, CCAL uses a strong

memory model disallowing all data races, while Armada uses

the x86-TSO memory model and thus can verify programs

with benign races and lock-free data structures.

It is worth noting that our level-based approach can be

seen as a special case of CCAL’s layer calculus. If we consider

Armada: Low-Effort Verification of High-Performance Concurrent Programs PLDI ’20, June 15–20, 2020, London, UK

the special case where specification of a layer is expressed in

the form of a program, then refinement between lower level

L and higher level H with respect to refinement relation R

can be expressed in the layer calculus as L ⊢R ∅ : H . That

is, without introducing any additional implementation in

the higher layer, the specification can nevertheless be trans-

formed between the underlay and overlay interfaces. Indeed,

the authors of concurrent CertiKOS sometimes use such

∅-implementation layers when one complex layer implemen-

tation cannot be further divided into smaller pieces [18, 23].

The proofs of refinement in these cases are complex, and

might perhaps be more easily constructed using Armada-

style levels and strategy-based automatic proof generation.

Recent work [7] uses the Iris framework [25] to reason

about a concurrent file system. It too expects developers

to write their code in a particular style that may limit per-

formance optimization opportunities and the ability to port

existing code. It also, like CertiKOS andCspec, requires much

manual proof.

QED [14] is the first verifier for functional correctness

of concurrent programs to incorporate reduction for pro-

gram transformation and to observe that weakening atomic

actions can eliminate conflicts and enable further reduc-

tion arguments. CIVL [19] extends and incorporates these

ideas into a refinement-oriented program verifier based on

the framework of layered concurrent programs [24]. (Lay-

ers in CIVL correspond to levels in Armada, not layers in

CertiKOS and Cspec.) Armada improves upon CIVL by pro-

viding a flexible framework for soundly introducing new

mechanically-verified program transformation rules; CIVL’s

rules are proven correct only on paper.

8 Limitations and Future Work
In this sectionwe discuss the limitations of the current design

and prototype of Armada and suggest items for future work.

Armada currently supports the x86-TSOmemorymodel [35]

and is thus not directly applicable to other architectures, like

ARM and Power. We believe x86-TSO is a good first step as it

illustrates how to account for weak memory models, while

still being simple enough to keep the proof complexity man-

ageable. An important area of future work is to add support

for other weak memory models.

As discussed in §7, Armada does not support layering but

is compatible with it. So, we plan to add such support to

increase the modularity of our proofs.

Armada uses Dafny to verify all proof material we gener-

ate. As such, the trusted computing base (TCB) of Armada

includes not only the compiler and the code for extracting

state machines from the implementation and specification,

but also the Dafny toolchain. This toolchain includes Dafny,

Boogie [3], Z3 [11], and our script for invoking Dafny.

Armada uses the CompCertTSO compiler, whose seman-

tics is similar, but not identical, to Armada’s. In particular,

CompCertTSO represents memory as a collection of blocks,

while Armada adopts a hierarchical forest representation.

Additionally, in CompCertTSO the program is modeled as

a composition of a number of state machines—one for each

thread—alongside a TSO state machine that models global

memory. Armada, on the other hand, models the program as

a single state machine that includes all threads and the global

memory. We currently assume that the CompCertTSOmodel

refines our own. It is future work to formally prove this by

demonstrating an injective mapping between the memory

locations and state transitions of the two models.

Because Armada currently emits proofs about finite be-

haviors, it can prove safety but not liveness properties. We

plan to address this via support for infinite behaviors.

Armada currently supports state transitions involving

only the current state, not future states. Hence, Armada can

encode history variables but not prophecy variables [1]. Ex-
panding the expressivity of state transitions is future work.

Since we only consider properties of single behaviors, we

cannot verify hyperproperties [8]. But, we can verify safety

properties that imply hyperproperties, such as the unwind-

ing conditions Nickel uses to prove noninterference [37, 39].

9 Conclusion
Via a common, low-level semantic framework, Armada sup-

ports a panoply of powerful strategies for automated rea-

soning about memory and concurrency, even while giving

developers the flexibility needed for performant code. Ar-

mada’s strategies can be soundly extended as new reasoning

principles are developed. Our evaluation on four case studies

demonstrates Armada is a practical tool that can handle a

diverse set of complex concurrency primitives, as well as

real-world, high-performance data structures.

10 Acknowledgments
The authors are grateful to our shepherd, Ronghui Gu, and

the anonymous reviewers for their valuable feedback that

greatly improved the paper. We also thank Tej Chajed, Chris

Hawblitzel, and Nikhil Swamy for reading early drafts of the

paper and providing useful suggestions, and Rustan Leino for

early discussions and for helpful Dafny advice and support.

This work was supported in part by the National Science

Foundation and VMware under Grant No. CNS-1700521, a

grant from the Alfred P. Sloan Foundation, and a Google

Faculty Fellowship.

References
[1] Martín Abadi and Leslie Lamport. 1991. The Existence of Refinement

Mappings. Theoretical Computer Science 82, 2 (May 1991), 253–284.

[2] Sarita V. Adve andMark D. Hill. 1990. Weak ordering—a new definition.

In Proc. International Symposium on Computer Architecture (ISCA). 2–
14.

[3] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and

K. Rustan M. Leino. 2006. Boogie: A modular reusable verifier for

PLDI ’20, June 15–20, 2020, London, UK J. R. Lorch, Y. Chen, M. Kapritsos, B. Parno, S. Qadeer, U. Sharma, J. R. Wilcox, X. Zhao

object-oriented programs. Proceedings of Formal Methods for Compo-
nents and Objects (FMCO) (2006).

[4] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. 2006. Formal

verification of a C compiler front-end. In Proc. International Symposium
on Formal Methods (FM). 460–475.

[5] Gérard Boudol and Gustavo Petri. 2009. Relaxed memory models:

An operational approach. In Proc. ACM Symposium on Principles of
Programming Languages (POPL). 392–403.

[6] Tej Chajed, M. Frans Kaashoek, Butler W. Lampson, and Nickolai Zel-

dovich. 2018. Verifying concurrent software using movers in CSPEC.

In Proc. USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI). 306–322.

[7] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zel-

dovich. 2019. Verifying concurrent, crash-safe systems with Perennial.

In Proc. ACM Symposium on Operating Systems Principles (SOSP). 243–
258.

[8] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties.

Journal of Computer Security 18, 6 (2010), 1157–1210.

[9] Ernie Cohen and Leslie Lamport. 1998. Reduction in TLA. In Concur-
rency Theory (CONCUR). 317–331.

[10] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner.

2014. TaDA: A logic for time and data abstraction. In Proc. European
Conference on Object-Oriented Programming (ECOOP). 207–231.

[11] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT

solver. In Proc. Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). 337–340.

[12] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J.

Parkinson, and Hongseok Yang. 2013. Views: Compositional reasoning

for concurrent programs. In Proc. ACM Symposium on Principles of
Programming Languages (POPL). 287–300.

[13] Mike Dodds, Xinyu Feng, Matthew J. Parkinson, and Viktor Vafeiadis.

2009. Deny-Guarantee Reasoning. In Proc. European Symposium on
Programming (ESOP). 363–377.

[14] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2009. A calculus of

atomic actions. In Proc. ACM Symposium on Principles of Programming
Languages (POPL). 2–15.

[15] Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. 2004. Exploit-

ing purity for atomicity. In Proc. ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis (ISSTA). 221–231.

[16] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,

Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and

Yu Guo. 2015. Deep specifications and certified abstraction layers. In

Proc. ACM Symposium on Principles of Programming Languages (POPL).
595–608.

[17] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vil-

helm Sjöberg, and David Costanzo. 2016. CertiKOS: An extensible ar-

chitecture for building certified concurrent OS kernels. In Proc. USENIX
Conference on Operating Systems Design and Implementation (OSDI).
653–669.

[18] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu,

Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David Costanzo, and

Tahina Ramananandro. 2018. Certified concurrent abstraction layers.

In Proc. ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). 646–661.

[19] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. 2015.

Automated and modular refinement reasoning for concurrent pro-

grams. In Proc. Computer Aided Verification (CAV). 449–465.
[20] C. B. Jones. 1983. Tentative Steps Toward a Development Method for

Interfering Programs. ACM Transactions on Programming Languages
and Systems (TOPLAS) 5, 4 (Oct. 1983), 596–619.

[21] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars

Birkedal, and Derek Dreyer. 2018. Iris From the Ground Up: A Modular

Foundation for Higher-order Concurrent Separation Logic. Journal of
Functional Programming 28, e20 (2018).

[22] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek

Dreyer. 2017. A promising semantics for relaxed-memory concurrency.

In Proc. ACM Symposium on Principles of Programming Languages
(POPL). 175–189.

[23] Jieung Kim, Vilhelm Sjöberg, Ronghui Gu, and Zhong Shao. 2017.

Safety and liveness of MCS lock—layer by layer. In Proc. Asian Sympo-
sium on Programming Languages and Systems (APLAS). 273–297.

[24] Bernhard Kragl and Shaz Qadeer. 2018. Layered concurrent programs.

In Proc. International Conference on Computer Aided Verification (CAV).
79–102.

[25] Robbert Krebbers, Ralf Jung, Ales̆ Bizjak, Jacques-Henri Jourdan, Derek

Dreyer, and Lars Birkedal. 2017. The essence of higher-order concur-

rent separation logic. In Proc. European Symposium on Programming
(ESOP). 696–723.

[26] Siddharth Krishna, Dennis E. Shasha, and ThomasWies. 2018. GoWith

the Flow: Compositional Abstractions for Concurrent Data Structures.

Proceedings of the ACM on Programming Languages 2, POPL (Jan. 2018),
37:1–37:31.

[27] K. Rustan M. Leino. 2010. Dafny: An automatic program verifier for

functional correctness. In Proc. Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR). 348–370.

[28] Hongjin Liang, Xinyu Feng, and Ming Fu. 2012. A rely-guarantee-

based simulation for verifying concurrent program transformations. In

Proc. ACM Symposium on Principles of Programming Languages (POPL).
455–468.

[29] LibLFDS. 2019. LFDS 7.11 queue implementation. https:
//github.com/liblfds/liblfds7.1.1/tree/master/liblfds7.1.1/liblfds711/
src/lfds711_queue_bounded_singleproducer_singleconsumer.

[30] Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of

Parallel Programs. Commun. ACM 18, 12 (Dec. 1975), 717–721.

[31] John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for

Scalable Synchronization on Shared-Memory Multiprocessors. ACM
Transactions on Computer Systems 9, 1 (Feb. 1991), 21–65.

[32] MagedM.Michael andMichael L. Scott. 2006. Simple, fast, and practical

non-blocking and blocking concurrent queue algorithms. In Proc. ACM
Symposium on Principles of Distributed Computing (PODC). 267–275.

[33] Peter W. O’Hearn. 2007. Resources, Concurrency, and Local Reasoning.

Theoretical Computer Science 375, 1–3 (2007), 271–307.
[34] Scott Owens. 2010. Reasoning about the implementation of concur-

rency abstractions on x86-TSO. In Proc. European Conference on Object-
Oriented Programming. 478–503.

[35] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A better x86

memory model: x86-TSO. In Proc. Theorem Proving in Higher Order
Logics (TPHOLs). 391–407.

[36] Shaz Qadeer. 2019. Private Communication.

[37] John Rushby. 1992. Noninterference, Transitivity, and Channel-control

Security Policies. Technical Report CSL-92-02, SRI International.

[38] Norbert Schirmer and Ernie Cohen. 2010. From total store order to se-

quential consistency: A practical reduction theorem. In Proc. Interactive
Theorem Proving (ITP). 403–418.

[39] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Born-

holt, Emina Torlak, and Xi Wang. 2018. Nickel: a framework for design

and verification of information flow control systems. In Proc. USENIX
Symposium on Operating Systems Design and Implementation (OSDI).
287–305.

[40] Bjarne Steensgaard. 1996. Points-to Analysis in Almost Linear Time. In

Proc. ACM Symposium on Principles of Programming Languages (POPL).
32–41.

[41] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh

Jagannathan, and Peter Sewell. 2011. Relaxed-memory concurrency

and verified compilation. In Proc. ACM Symposium on Principles of
Programming Languages (POPL). 43–54.

[42] David A. Wheeler. 2004. SLOCCount. Software distribution. http:
//www.dwheeler.com/sloccount/.

https://github.com/liblfds/liblfds7.1.1/tree/master/liblfds7.1.1/liblfds711/src/lfds711_queue_bounded_singleproducer_singleconsumer
https://github.com/liblfds/liblfds7.1.1/tree/master/liblfds7.1.1/liblfds711/src/lfds711_queue_bounded_singleproducer_singleconsumer
https://github.com/liblfds/liblfds7.1.1/tree/master/liblfds7.1.1/liblfds711/src/lfds711_queue_bounded_singleproducer_singleconsumer
http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/

	Abstract
	1 Introduction
	2 Overview
	2.1 Example specification and implementation
	2.2 Example proof strategy

	3 Semantics and Language Design
	3.1 The Armada Language
	3.2 Small-step state-machine semantics

	4 Refinement Framework
	4.1 Aspects common to all strategies
	4.2 Specific strategies

	5 Implementation
	6 Evaluation
	6.1 Barrier
	6.2 Pointers
	6.3 MCSLock
	6.4 Queue

	7 Related Work
	8 Limitations and Future Work
	9 Conclusion
	10 Acknowledgments
	References

